What is TensorBay?

As an expert in unstructured data management, TensorBay provides services like data hosting, complex data version management, online data visualization, and data collaboration. TensorBay’s unified authority management makes your data sharing and collaborative use more secure.

This documentation describes SDK and CLI tools for using TensorBay.

What can TensorBay SDK do?

TensorBay Python SDK is a python library to access TensorBay and manage your datasets. It provides:

  • A pythonic way to access TensorBay resources by TensorBay OpenAPI.

  • An easy-to-use CLI tool gas (Graviti AI service) to communicate with TensorBay.

  • A consistent dataset structure to read and write datasets.

Getting started with TensorBay

Installation

To install TensorBay SDK and CLI by pip, run the following command:

$ pip3 install tensorbay

To verify the SDK and CLI version, run the following command:

$ gas --version

Registration

Before using TensorBay SDK, please finish the following registration steps:

Note

An AccessKey is needed to authenticate identity when using TensorBay via SDK or CLI.

Usage

Authorize a Client Instance

from tensorbay import GAS

gas = GAS("<YOUR_ACCESSKEY>")

See this page for details about authenticating identity via CLI.

Create a Dataset

gas.create_dataset("DatasetName")

List Dataset Names

dataset_names = gas.list_dataset_names()

Upload Images to the Dataset

from tensorbay.dataset import Data, Dataset

# Organize the local dataset by the "Dataset" class before uploading.
dataset = Dataset("DatasetName")

# TensorBay uses "segment" to separate different parts in a dataset.
segment = dataset.create_segment()

segment.append(Data("0000001.jpg"))
segment.append(Data("0000002.jpg"))

dataset_client = gas.upload_dataset(dataset)

# TensorBay provides dataset version control feature, commit the uploaded data before using it.
dataset_client.commit("Initial commit")

Read Images from the Dataset

from PIL import Image
from tensorbay.dataset import Segment

dataset_client = gas.get_dataset("DatasetName")

segment = Segment("", dataset_client)

for data in segment:
    with data.open() as fp:
        image = Image.open(fp)
        width, height = image.size
        image.show()

Delete the Dataset

gas.delete_dataset("DatasetName")

Examples

The following table lists a series of examples to help developers to use TensorBay(Table. 1).

Examples

Examples

Description

Dogs vs Cats

Topic: Dataset Management
Data Type: Image
Label Type: Classification

20 Newsgroups

Topic: Dataset Management
Data Type: Text
Label Type: Classification

BSTLD

Topic: Dataset Management
Data Type: Image
Label Type: Box2D

Neolix OD

Topic: Dataset Management
Data Type: Point Cloud
Label Type: Box3D

Leeds Sports Pose

Topic: Dataset Management
Data Type: Image
Label Type: Keypoints2D

THCHS-30

Topic: Dataset Management
Data Type: Audio
Label Type: Sentence

Read “Dataset” Class

Dataset: BSTLD
Data Type: Image
Label Type: Box2D

Dogs vs Cats

This topic describes how to manage the “Dogs vs Cats” dataset.

“Dogs vs Cats” is a dataset with Classification label type. See this page for more details about this dataset.

Authorize a Client Instance

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset("DogsVsCats")

List Dataset Names

List all the available datasets to check if the “Dogs vs Cats” dataset have been created. See this page for details.

gas.list_dataset_names()

Organize Dataset

This part describes how to organize the “Dogs vs Cats” dataset by the Dataset instance before uploading it to TensorBay. It takes the following steps to organize “Dogs vs Cats”.

Write the Catalog

The first step is to write the catalog(ref). Catalog is a json file contains all label information of one dataset. The only annotation type for “Dogs vs Cats” is Classification, and there are 2 category types.

1{
2    "CLASSIFICATION": {
3        "categories": [{ "name": "cat" }, { "name": "dog" }]
4    }
5}

Important

See this part for more examples of catalogs with different label types.

Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset instance. The code block below displays the “Dogs vs Cats” dataloader.

 1#!/usr/bin/env python3
 2#
 3# Copyright 2021 Graviti. Licensed under MIT License.
 4#
 5# pylint: disable=invalid-name
 6# pylint: disable=missing-module-docstring
 7
 8import os
 9
10from ...dataset import Data, Dataset
11from ...label import Classification
12from .._utility import glob
13
14DATASET_NAME = "DogsVsCats"
15_SEGMENTS = {"train": True, "test": False}
16
17
18def DogsVsCats(path: str) -> Dataset:
19    """Dataloader of the `Dogs vs Cats`_ dataset.
20
21    .. _Dogs vs Cats: https://www.kaggle.com/c/dogs-vs-cats
22
23    The file structure should be like::
24
25        <path>
26            train/
27                cat.0.jpg
28                ...
29                dog.0.jpg
30                ...
31            test/
32                1000.jpg
33                1001.jpg
34                ...
35
36    Arguments:
37        path: The root directory of the dataset.
38
39    Returns:
40        Loaded :class:`~tensorbay.dataset.dataset.Dataset` instance.
41
42    """
43    root_path = os.path.abspath(os.path.expanduser(path))
44    dataset = Dataset(DATASET_NAME)
45    dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
46
47    for segment_name, is_labeled in _SEGMENTS.items():
48        segment = dataset.create_segment(segment_name)
49        image_paths = glob(os.path.join(root_path, segment_name, "*.jpg"))
50        for image_path in image_paths:
51            data = Data(image_path)
52            if is_labeled:
53                data.label.classification = Classification(os.path.basename(image_path)[:3])
54            segment.append(data)
55
56    return dataset

Note that after the dataset is created, the catalog needs to be loaded.(L43) The catalog file “catalog.json” is in the same directory with dataloader file.

In this example, segments are created by dataset.create_segment(SEGMENT_NAME). A default segment can also be created without giving a specific name, then its name will be “”.

See this page for more details for about Classification annotation details.

Note

The Dogs vs Cats dataloader above uses relative import(L11-12). However, use regular import when writing your own dataloader. And use relative import when contributing the dataloader.

Important

See this part for more examples of dataloaders with different label types.

Upload Dataset

After finishing the dataloader and organize the “Dogs vs Cats” into a Dataset instance, upload it to TensorBay for sharing, reuse, etc.

# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("initial commit")

Remember to execute the commit step after uploading. If needed, re-upload and commit again. Please see this page for more details about version control.

Note

Commit operation can also be done on our GAS Platform.

Read Dataset

Now “Dogs vs Cats” dataset can be read from TensorBay.

dataset_client = gas.get_dataset("DogsVsCats")

In dataset “Dogs vs Cats”, there are two Segments: train and test. Get the segment names by listing them all.

dataset_client.list_segment_names()

Get a segment by passing the required segment name.

from tensorbay.dataset import Segment

train_segment = Segment("train", dataset_client)

In the train segment, there is a sequence of data, which can be obtained by index.

data = train_segment[0]

Note

If the segment or fusion segment is created without given name, then its name will be “”.

In each data, there is a sequence of Classification annotations, which can be obtained by index.

category = data.label.classification.category

There is only one label type in “Dogs vs Cats” dataset, which is classification. The information stored in category is one of the category names in “categories” list of catalog.json. See this page for more details about the structure of Classification.

Delete Dataset

To delete “Dogs vs Cats”, run the following code:

gas.delete_dataset("DogsVsCats")

BSTLD

This topic describes how to manage the BSTLD Dataset, which is a dataset with Box2D label(Fig. 1).

_images/example-Box2D.png

The preview of a cropped image with labels from “BSTLD”.

Authorize a Client Instance

An accesskey is needed to authenticate identity when using TensorBay.

from tensorbay import GAS

ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)

Create Dataset

gas.create_dataset("BSTLD")

Organize Dataset

It takes the following steps to organize the “BSTLD” dataset by the Dataset instance.

Step 1: Write the Catalog

Catalog contains all label information of one dataset, which is typically stored in a json file.

 1{
 2    "BOX2D": {
 3        "categories": [
 4            { "name": "Red" },
 5            { "name": "RedLeft" },
 6            { "name": "RedRight" },
 7            { "name": "RedStraight" },
 8            { "name": "RedStraightLeft" },
 9            { "name": "Green" },
10            { "name": "GreenLeft" },
11            { "name": "GreenRight" },
12            { "name": "GreenStraight" },
13            { "name": "GreenStraightLeft" },
14            { "name": "GreenStraigntRight" },
15            { "name": "Yellow" },
16            { "name": "off" }
17        ],
18        "attributes": [
19            {
20                "name": "occluded",
21                "type": "boolean"
22            }
23        ]
24    }
25}

The only annotation type for “BSTLD” is Box2D, and there are 13 category types and one attributes type.

Important

See catalog table for more catalogs with different label types.

Step 2: Write the Dataloader

A dataloader is needed to organize the dataset into a Dataset instance.

 1#!/usr/bin/env python3
 2#
 3# Copytright 2021 Graviti. Licensed under MIT License.
 4#
 5# pylint: disable=invalid-name
 6# pylint: disable=missing-module-docstring
 7
 8import os
 9
10from ...dataset import Data, Dataset
11from ...label import LabeledBox2D
12
13DATASET_NAME = "BSTLD"
14
15_LABEL_FILENAME_DICT = {
16    "test": "test.yaml",
17    "train": "train.yaml",
18    "additional": "additional_train.yaml",
19}
20
21
22def BSTLD(path: str) -> Dataset:
23    """Dataloader of the `BSTLD`_ dataset.
24
25    .. _BSTLD: https://hci.iwr.uni-heidelberg.de/content/bosch-small-traffic-lights-dataset
26
27    The file structure should be like::
28
29        <path>
30            rgb/
31                additional/
32                    2015-10-05-10-52-01_bag/
33                        <image_name>.jpg
34                        ...
35                    ...
36                test/
37                    <image_name>.jpg
38                    ...
39                train/
40                    2015-05-29-15-29-39_arastradero_traffic_light_loop_bag/
41                        <image_name>.jpg
42                        ...
43                    ...
44            test.yaml
45            train.yaml
46            additional_train.yaml
47
48    Arguments:
49        path: The root directory of the dataset.
50
51    Returns:
52        Loaded :class:`~tensorbay.dataset.dataset.Dataset` instance.
53
54    """
55    import yaml  # pylint: disable=import-outside-toplevel
56
57    root_path = os.path.abspath(os.path.expanduser(path))
58
59    dataset = Dataset(DATASET_NAME)
60    dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
61
62    for mode, label_file_name in _LABEL_FILENAME_DICT.items():
63        segment = dataset.create_segment(mode)
64        label_file_path = os.path.join(root_path, label_file_name)
65
66        with open(label_file_path, encoding="utf-8") as fp:
67            labels = yaml.load(fp, yaml.FullLoader)
68
69        for label in labels:
70            if mode == "test":
71                # the path in test label file looks like:
72                # /absolute/path/to/<image_name>.png
73                file_path = os.path.join(root_path, "rgb", "test", label["path"].rsplit("/", 1)[-1])
74            else:
75                # the path in label file looks like:
76                # ./rgb/additional/2015-10-05-10-52-01_bag/<image_name>.png
77                file_path = os.path.join(root_path, *label["path"][2:].split("/"))
78            data = Data(file_path)
79            data.label.box2d = [
80                LabeledBox2D(
81                    box["x_min"],
82                    box["y_min"],
83                    box["x_max"],
84                    box["y_max"],
85                    category=box["label"],
86                    attributes={"occluded": box["occluded"]},
87                )
88                for box in label["boxes"]
89            ]
90            segment.append(data)
91
92    return dataset

See Box2D annotation for more details.

Note

Since the BSTLD dataloader above is already included in TensorBay, so it uses relative import. However, the regular import should be used when writing a new dataloader.

from tensorbay.dataset import Data, Dataset
from tensorbay.label import LabeledBox2D

There are already a number of dataloaders in TensorBay SDK provided by the community. Thus, instead of writing, importing an available dataloader is also feasible.

from tensorbay.opendataset import BSTLD

dataset = BSTLD("path/to/dataset/directory")

Important

See dataloader table for dataloaders with different label types.

Upload Dataset

The organized “BSTLD” dataset can be uploaded to TensorBay for sharing, reuse, etc.

dataset_client = gas.upload_dataset(dataset)
dataset_client.commit("initial commit")

Similar with Git, the commit step after uploading can record changes to the dataset as a version. If needed, do the modifications and commit again. Please see Version Control for more details.

Read Dataset

Now “BSTLD” dataset can be read from TensorBay.

dataset_client = gas.get_dataset("BSTLD")

In dataset “BSTLD”, there are three segments: train, test and additional. Get the segment names by listing them all.

dataset_client.list_segment_names()

Get a segment by passing the required segment name.

from tensorbay.dataset import Segment

train_segment = Segment("train", dataset_client)

In the train segment, there is a sequence of data, which can be obtained by index.

data = train_segment[3]

In each data, there is a sequence of Box2D annotations, which can be obtained by index.

label_box2d = data.label.box2d[0]
category = label_box2d.category
attributes = label_box2d.attributes

There is only one label type in “BSTLD” dataset, which is box2d. The information stored in category is one of the names in “categories” list of catalog.json. The information stored in attributes is one or several of the attributes in “attributes” list of catalog.json. See Box2D label format for more details.

Delete Dataset

gas.delete_dataset("BSTLD")

Leeds Sports Pose

This topic describes how to manage the “Leeds Sports Pose” dataset.

“Leeds Sports Pose” is a dataset with Keypoints2D label type (Fig. 2). See this page for more details about this dataset.

_images/example-Keypoints2D.png

The preview of an image with labels from “Leeds Sports Pose”.

Authorize a Client Instance

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset("LeedsSportsPose")

List Dataset Names

List all the available datasets to check if the “Leeds Sports Pose” dataset have been created. See this page for details.

gas.list_dataset_names()

Organize Dataset

This part describes how to organize the “Leeds Sports Pose” dataset by the Dataset instance before uploading it to TensorBay. It takes the following steps to organize “Leeds Sports Pose”.

Write the Catalog

The first step is to write the catalog. Catalog is a json file contains all label information of one dataset. See this page for more details. The only annotation type for “Leeds Sports Pose” is Keypoints2D.

 1{
 2    "KEYPOINTS2D": {
 3        "keypoints": [
 4            {
 5                "number": 14,
 6                "names": [
 7                    "Right ankle",
 8                    "Right knee",
 9                    "Right hip",
10                    "Left hip",
11                    "Left knee",
12                    "Left ankle",
13                    "Right wrist",
14                    "Right elbow",
15                    "Right shoulder",
16                    "Left shoulder",
17                    "Left elbow",
18                    "Left wrist",
19                    "Neck",
20                    "Head top"
21                ],
22                "skeleton": [
23                    [0, 1],
24                    [1, 2],
25                    [3, 4],
26                    [4, 5],
27                    [6, 7],
28                    [7, 8],
29                    [9, 10],
30                    [10, 11],
31                    [12, 13],
32                    [12, 2],
33                    [12, 3]
34                ],
35                "visible": "BINARY"
36            }
37        ]
38    }
39}
Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset instance. The code block below displays the “Leeds Sports Pose” dataloader.

 1#!/usr/bin/env python3
 2#
 3# Copyright 2021 Graviti. Licensed under MIT License.
 4#
 5# pylint: disable=invalid-name
 6# pylint: disable=missing-module-docstring
 7
 8import os
 9
10from ...dataset import Data, Dataset
11from ...geometry import Keypoint2D
12from ...label import LabeledKeypoints2D
13from .._utility import glob
14
15DATASET_NAME = "LeedsSportsPose"
16
17
18def LeedsSportsPose(path: str) -> Dataset:
19    """Dataloader of the `Leeds Sports Pose`_ dataset.
20
21    .. _Leeds Sports Pose: https://sam.johnson.io/research/lsp.html
22
23    The folder structure should be like::
24
25        <path>
26            joints.mat
27            images/
28                im0001.jpg
29                im0002.jpg
30                ...
31
32    Arguments:
33        path: The root directory of the dataset.
34
35    Returns:
36        Loaded :class:`~tensorbay.dataset.dataset.Dataset` instance.
37
38    """
39    from scipy.io import loadmat  # pylint: disable=import-outside-toplevel
40
41    root_path = os.path.abspath(os.path.expanduser(path))
42
43    dataset = Dataset(DATASET_NAME)
44    dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
45    segment = dataset.create_segment()
46
47    mat = loadmat(os.path.join(root_path, "joints.mat"))
48
49    joints = mat["joints"].T
50    image_paths = glob(os.path.join(root_path, "images", "*.jpg"))
51    for image_path in image_paths:
52        data = Data(image_path)
53        data.label.keypoints2d = []
54        index = int(os.path.basename(image_path)[2:6]) - 1  # get image index from "im0001.jpg"
55
56        keypoints = LabeledKeypoints2D()
57        for keypoint in joints[index]:
58            keypoints.append(  # pylint: disable=no-member  # pylint issue #3131
59                Keypoint2D(keypoint[0], keypoint[1], int(not keypoint[2]))
60            )
61
62        data.label.keypoints2d.append(keypoints)
63        segment.append(data)
64    return dataset

Note that after the dataset is created, the catalog needs to be loaded.(L42) The catalog file “catalog.json” is in the same directory with dataloader file.

In this example, a default segment is created without giving a specific name. A segment can also be created by dataset.create_segment(SEGMENT_NAME).

See this page for more details for about Keypoints2D annotation details.

Note

The LeedsSportsPose dataloader above uses relative import(L11-13). However, use regular import when writing your own dataloader. And use relative import when contributing the dataloader.

Upload Dataset

After finishing the dataloader and organize the “Leeds Sports Pose” into a Dataset instance, upload it to TensorBay for sharing, reuse, etc.

# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("initial commit")

Remember to execute the commit step after uploading. If needed, re-upload and commit again. Please see this page for more details about version control.

Note

Commit operation can also be done on our GAS Platform.

Read Dataset

Now “Leeds Sports Pose” dataset can be read from TensorBay.

dataset_client = gas.get_dataset("LeedsSportsPose")

In dataset “Leeds Sports Pose”, there is one default Segments "" (empty string). Get it by passing the segment name.

from tensorbay.dataset import Segment

default_segment = Segment("", dataset_client)

In the train segment, there is a sequence of data, which can be obtained by index.

data = default_segment[0]

Note

If the segment or fusion segment is created without given name, then its name will be “”.

In each data, there is a sequence of Keypoints2D annotations, which can be obtained by index.

label_keypoints2d = data.label.keypoints2d[0]
x = data.label.keypoints2d[0][0].x
y = data.label.keypoints2d[0][0].y
v = data.label.keypoints2d[0][0].v

There is only one label type in “Leeds Sports Pose” dataset, which is keypoints2d. The information stored in x (y) is the x (y) coordinate of one keypoint of one keypoints list. The information stored in v is the visible status of one keypoint of one keypoints list. See this page for more details about the structure of Keypoints2D.

Delete Dataset

To delete “Leeds Sports Pose”, run the following code:

gas.delete_dataset("LeedsSportsPose")

Neolix OD

This topic describes how to manage the “Neolix OD” dataset.

“Neolix OD” is a dataset with Box3D label type (Fig. 3). See this page for more details about this dataset.

_images/example-Box3D.png

The preview of a point cloud from “Neolix OD” with Box3D labels.

Authorize a Client Instance

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset("NeolixOD")

List Dataset Names

List all the available datasets to check if the “Neolix OD” dataset have been created. See this page for details.

gas.list_dataset_names()

Organize Dataset

This part describes how to organize the “Neolix OD” dataset by the Dataset instance before uploading it to TensorBay. It takes the following steps to organize “Neolix OD”.

Write the Catalog

The first step is to write the catalog. Catalog is a json file contains all label information of one dataset. See this page for more details. The only annotation type for “Neolix OD” is Box3D, and there are 15 category types and 3 attributes types.

 1{
 2    "BOX3D": {
 3        "categories": [
 4            { "name": "Adult" },
 5            { "name": "Animal" },
 6            { "name": "Barrier" },
 7            { "name": "Bicycle" },
 8            { "name": "Bicycles" },
 9            { "name": "Bus" },
10            { "name": "Car" },
11            { "name": "Child" },
12            { "name": "Cyclist" },
13            { "name": "Motorcycle" },
14            { "name": "Motorcyclist" },
15            { "name": "Trailer" },
16            { "name": "Tricycle" },
17            { "name": "Truck" },
18            { "name": "Unknown" }
19        ],
20        "attributes": [
21            {
22                "name": "Alpha",
23                "type": "number",
24                "description": "Angle of view"
25            },
26            {
27                "name": "Occlusion",
28                "enum": [0, 1, 2],
29                "description": "It indicates the degree of occlusion of objects by other obstacles"
30            },
31            {
32                "name": "Truncation",
33                "type": "boolean",
34                "description": "It indicates whether the object is truncated by the edge of the image"
35            }
36        ]
37    }
38}
Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset instance. The code block below displays the “Neolix OD” dataloader.

 1#!/usr/bin/env python3
 2#
 3# Copyright 2021 Graviti. Licensed under MIT License.
 4#
 5# pylint: disable=invalid-name
 6# pylint: disable=missing-module-docstring
 7
 8import os
 9
10from quaternion import from_rotation_vector
11
12from ...dataset import Data, Dataset
13from ...label import LabeledBox3D
14from .._utility import glob
15
16DATASET_NAME = "NeolixOD"
17
18
19def NeolixOD(path: str) -> Dataset:
20    """Dataloader of the `Neolix OD`_ dataset.
21
22    .. _Neolix OD: https://www.graviti.cn/dataset-detail/NeolixOD
23
24    The file structure should be like::
25
26        <path>
27            bins/
28                <id>.bin
29            labels/
30                <id>.txt
31            ...
32
33    Arguments:
34        path: The root directory of the dataset.
35
36    Returns:
37        Loaded :class:`~tensorbay.dataset.dataset.Dataset` instance.
38
39    """
40    root_path = os.path.abspath(os.path.expanduser(path))
41
42    dataset = Dataset(DATASET_NAME)
43    dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
44    segment = dataset.create_segment()
45
46    point_cloud_paths = glob(os.path.join(root_path, "bins", "*.bin"))
47
48    for point_cloud_path in point_cloud_paths:
49        data = Data(point_cloud_path)
50        data.label.box3d = []
51
52        point_cloud_id = os.path.basename(point_cloud_path)[:6]
53        label_path = os.path.join(root_path, "labels", f"{point_cloud_id}.txt")
54
55        with open(label_path, encoding="utf-8") as fp:
56            for label_value_raw in fp:
57                label_value = label_value_raw.rstrip().split()
58                label = LabeledBox3D(
59                    size=[float(label_value[10]), float(label_value[9]), float(label_value[8])],
60                    translation=[
61                        float(label_value[11]),
62                        float(label_value[12]),
63                        float(label_value[13]) + 0.5 * float(label_value[8]),
64                    ],
65                    rotation=from_rotation_vector((0, 0, float(label_value[14]))),
66                    category=label_value[0],
67                    attributes={
68                        "Occlusion": int(label_value[1]),
69                        "Truncation": bool(int(label_value[2])),
70                        "Alpha": float(label_value[3]),
71                    },
72                )
73                data.label.box3d.append(label)
74
75        segment.append(data)
76    return dataset

Note that after the dataset is created, the catalog needs to be loaded.(L41) The catalog file “catalog.json” is in the same directory with dataloader file.

In this example, segments are created by dataset.create_segment(SEGMENT_NAME). A default segment can also be created without giving a specific name, then its name will be “”.

See this page for more details for about Box3D annotation details.

Note

The Neolix OD dataloader above uses relative import(L13-14). However, use regular import when writing your own dataloader. And use relative import when contributing the dataloader.

Upload Dataset

After finishing the dataloader and organize the “Neolix OD” into a Dataset instance, upload it to TensorBay for sharing, reuse, etc.

# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("initial commit")

Remember to execute the commit step after uploading. If needed, re-upload and commit again. Please see this page for more details about version control.

Note

Commit operation can also be done on our GAS Platform.

Read Dataset

Now “Neolix OD” dataset can be read from TensorBay.

dataset_client = gas.get_dataset("NeolixOD")

In dataset “Neolix OD”, there is one default Segment: "" (empty string). Get a segment by passing the required segment name.

from tensorbay.dataset import Segment

default_segment = Segment("", dataset_client)

In the default segment, there is a sequence of data, which can be obtained by index.

data = default_segment[0]

Note

If the segment or fusion segment is created without given name, then its name will be “”.

In each data, there is a sequence of Box3D annotations,

label_box3d = data.label.box3d[0]
category = label_box3d.category
attributes = label_box3d.attributes

There is only one label type in “Neolix OD” dataset, which is box3d. The information stored in category is one of the category names in “categories” list of catalog.json. The information stored in attributes is one of the attributes in “attributes” list of catalog.json.

See this page for more details about the structure of Box3D.

Delete Dataset

To delete “Neolix OD”, run the following code:

gas.delete_dataset("NeolixOD")

THCHS-30

This topic describes how to manage the “THCHS-30” dataset.

“THCHS-30” is a dataset with Sentence label type. See this page for more details about this dataset.

Authorize a Client Instance

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset("THCHS-30")

List Dataset Names

List all the available datasets to check if the “THCHS-30” dataset have been created. See this page for details.

gas.list_dataset_names()

Organize Dataset

This part describes how to organize the “THCHS-30” dataset by the Dataset instance before uploading it to TensorBay. It takes the following steps to organize “THCHS-30”.

Write the Catalog

The first step is to write the catalog. Typically, Catalog is a json file contains all label information of one dataset. See this page for more details. However the catalog of THCHS-30 is too large, so the subcatalog is loaded by the raw file and map it to catalog, See code block below for more details.

Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset instance. The code block below displays the “THCHS-30” dataloader.

 1#!/usr/bin/env python3
 2#
 3# Copyright 2021 Graviti. Licensed under MIT License.
 4#
 5# pylint: disable=invalid-name
 6# pylint: disable=missing-module-docstring
 7
 8import os
 9from itertools import islice
10from typing import List
11
12from ...dataset import Data, Dataset
13from ...label import LabeledSentence, SentenceSubcatalog, Word
14from .._utility import glob
15
16DATASET_NAME = "THCHS-30"
17_SEGMENT_NAME_LIST = ("train", "dev", "test")
18
19
20def THCHS30(path: str) -> Dataset:
21    """Dataloader of the `THCHS-30`_ dataset.
22
23    .. _THCHS-30: http://166.111.134.19:7777/data/thchs30/README.html
24
25    The file structure should be like::
26
27        <path>
28            lm_word/
29                lexicon.txt
30            data/
31                A11_0.wav.trn
32                ...
33            dev/
34                A11_101.wav
35                ...
36            train/
37            test/
38
39    Arguments:
40        path: The root directory of the dataset.
41
42    Returns:
43        Loaded :class:`~tensorbay.dataset.dataset.Dataset` instance.
44
45    """
46    dataset = Dataset(DATASET_NAME)
47    dataset.catalog.sentence = _get_subcatalog(os.path.join(path, "lm_word", "lexicon.txt"))
48    for segment_name in _SEGMENT_NAME_LIST:
49        segment = dataset.create_segment(segment_name)
50        for filename in glob(os.path.join(path, segment_name, "*.wav")):
51            data = Data(filename)
52            label_file = os.path.join(path, "data", os.path.basename(filename) + ".trn")
53            data.label.sentence = _get_label(label_file)
54            segment.append(data)
55    return dataset
56
57
58def _get_label(label_file: str) -> List[LabeledSentence]:
59    with open(label_file, encoding="utf-8") as fp:
60        labels = ((Word(text=text) for text in texts.split()) for texts in fp)
61        return [LabeledSentence(*labels)]
62
63
64def _get_subcatalog(lexion_path: str) -> SentenceSubcatalog:
65    subcatalog = SentenceSubcatalog()
66    with open(lexion_path, encoding="utf-8") as fp:
67        for line in islice(fp, 4, None):
68            subcatalog.append_lexicon(line.strip().split())
69    return subcatalog

Normally, after the dataset is created, the catalog needs to be loaded. However, in this example, there is no catalog.json file, because the lexion of THCHS-30 is too large (See more details of lexion in Sentence). Therefore,the subcatalog is loaded from the raw file lexicon.txt and map it to have the catalog.(L45)

See this page for more details about Sentence annotation details.

Note

The THCHS-30 dataloader above uses relative import(L13-14). However, use regular import when writing your own dataloader. And use relative import when contributing the dataloader.

Upload Dataset

After finishing the dataloader and organize the “THCHS-30” into a Dataset instance, upload it to TensorBay for sharing, reuse, etc.

# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("initial commit")

Remember to execute the commit step after uploading. If needed, re-upload and commit again. Please see Version Control for more details.

Note

Commit operation can alse be done on our GAS Platform.

Read Dataset

Now “THCHS-30” dataset can be read from TensorBay.

dataset_client = gas.get_dataset("THCHS-30")

In dataset “THCHS-30”, there are three Segments: dev, train and test. Get the segment names by listing them all.

dataset_client.list_segment_names()

Get a segment by passing the required segment name.

from tensorbay.dataset import Segment

dev_segment = Segment("dev", dataset_client)

In the dev segment, there is a sequence of data, which can be obtained by index.

data = dev_segment[0]

Note

If the segment or fusion segment is created without given name, then its name will be “”.

In each data, there is a sequence of Sentence annotations, which can be obtained by index.

labeled_sentence = data.label.sentence[0]
sentence = labeled_sentence.sentence
spell = labeled_sentence.spell
phone = labeled_sentence.phone

There is only one label type in “THCHS-30” dataset, which is Sentence. It contains sentence, spell and phone information. See this page for more details about the structure of Sentence.

Delete Dataset

To delete “THCHS-30”, run the following code:

gas.delete_dataset("THCHS-30")

20 Newsgroups

This topic describes how to manage the “20 Newsgroups” dataset.

“20 Newsgroups” is a dataset with Classification label type. See this page for more details about this dataset.

Authorize a Client Instance

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset("Newsgroups20")

List Dataset Names

List all the available datasets to check if the “20 Newsgroups” dataset have been created. See this page for details.

gas.list_dataset_names()

Organize Dataset

This part describes how to organize the “20 Newsgroups” dataset by the Dataset instance before uploading it to TensorBay. It takes the following steps to organize “20 Newsgroups”.

Write the Catalog

The first step is to write the catalog. Catalog is a json file contains all label information of one dataset. See this page for more details. The only annotation type for “20 Newsgroups” is Classification, and there are 20 category types.

 1{
 2    "CLASSIFICATION": {
 3        "categories": [
 4            { "name": "alt.atheism" },
 5            { "name": "comp.graphics" },
 6            { "name": "comp.os.ms-windows.misc" },
 7            { "name": "comp.sys.ibm.pc.hardware" },
 8            { "name": "comp.sys.mac.hardware" },
 9            { "name": "comp.windows.x" },
10            { "name": "misc.forsale" },
11            { "name": "rec.autos" },
12            { "name": "rec.motorcycles" },
13            { "name": "rec.sport.baseball" },
14            { "name": "rec.sport.hockey" },
15            { "name": "sci.crypt" },
16            { "name": "sci.electronics" },
17            { "name": "sci.med" },
18            { "name": "sci.space" },
19            { "name": "soc.religion.christian" },
20            { "name": "talk.politics.guns" },
21            { "name": "talk.politics.mideast" },
22            { "name": "talk.politics.misc" },
23            { "name": "talk.religion.misc" }
24        ]
25    }
26}

Note

The categories in dataset “20 Newsgroups” have parent-child relationship, and it use “.” to sparate different levels.

Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset instance. The code block below displays the “20 Newsgroups” dataloader.

 1#!/usr/bin/env python3
 2#
 3# Copyright 2021 Graviti. Licensed under MIT License.
 4#
 5# pylint: disable=invalid-name
 6# pylint: disable=missing-module-docstring
 7
 8import os
 9
10from ...dataset import Data, Dataset
11from ...label import Classification
12from .._utility import glob
13
14DATASET_NAME = "Newsgroups20"
15SEGMENT_DESCRIPTION_DICT = {
16    "20_newsgroups": "Original 20 Newsgroups data set",
17    "20news-bydate-train": (
18        "Training set of the second version of 20 Newsgroups, "
19        "which is sorted by date and has duplicates and some headers removed"
20    ),
21    "20news-bydate-test": (
22        "Test set of the second version of 20 Newsgroups, "
23        "which is sorted by date and has duplicates and some headers removed"
24    ),
25    "20news-18828": (
26        "The third version of 20 Newsgroups, which has duplicates removed "
27        "and includes only 'From' and 'Subject' headers"
28    ),
29}
30
31
32def Newsgroups20(path: str) -> Dataset:
33    """Dataloader of the `20 Newsgroups`_ dataset.
34
35    .. _20 Newsgroups: http://qwone.com/~jason/20Newsgroups/
36
37    The folder structure should be like::
38
39        <path>
40            20news-18828/
41                alt.atheism/
42                    49960
43                    51060
44                    51119
45                    51120
46                    ...
47                comp.graphics/
48                comp.os.ms-windows.misc/
49                comp.sys.ibm.pc.hardware/
50                comp.sys.mac.hardware/
51                comp.windows.x/
52                misc.forsale/
53                rec.autos/
54                rec.motorcycles/
55                rec.sport.baseball/
56                rec.sport.hockey/
57                sci.crypt/
58                sci.electronics/
59                sci.med/
60                sci.space/
61                soc.religion.christian/
62                talk.politics.guns/
63                talk.politics.mideast/
64                talk.politics.misc/
65                talk.religion.misc/
66            20news-bydate-test/
67            20news-bydate-train/
68            20_newsgroups/
69
70    Arguments:
71        path: The root directory of the dataset.
72
73    Returns:
74        Loaded :class:`~tensorbay.dataset.dataset.Dataset` instance.
75
76    """
77    root_path = os.path.abspath(os.path.expanduser(path))
78    dataset = Dataset(DATASET_NAME)
79    dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
80
81    for segment_name, segment_description in SEGMENT_DESCRIPTION_DICT.items():
82        segment_path = os.path.join(root_path, segment_name)
83        if not os.path.isdir(segment_path):
84            continue
85
86        segment = dataset.create_segment(segment_name)
87        segment.description = segment_description
88
89        text_paths = glob(os.path.join(segment_path, "*", "*"))
90        for text_path in text_paths:
91            category = os.path.basename(os.path.dirname(text_path))
92
93            data = Data(
94                text_path, target_remote_path=f"{category}/{os.path.basename(text_path)}.txt"
95            )
96            data.label.classification = Classification(category)
97            segment.append(data)
98
99    return dataset

Note that after the dataset is created, the catalog needs to be loaded. (L77) The catalog file “catalog.json” is in the same directory with dataloader file.

In this example, segments are created by dataset.create_segment(SEGMENT_NAME). A default segment can also be created without giving a specific name, then its name will be “”.

See this page for more details for about Classification annotation details.

Note

The 20 Newsgroups dataloader above uses relative import(L11-12). However, use regular import when writing your own dataloader. And use relative import when contributing the dataloader.

Note

The data in “20 Newsgroups” do not have extensions so that a “txt” extension is added to the remote path of each data file(L92) to ensure the loaded dataset could function well on TensorBay.

Upload Dataset

After finishing the dataloader and organize the “20 Newsgroups” into a Dataset instance, upload it to TensorBay for sharing, reuse, etc.

# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("initial commit")

Remember to execute the commit step after uploading. If needed, re-upload and commit again. Please see this page for more details about version control.

Note

Commit operation can also be done on our GAS Platform.

Read Dataset

Now “20 Newsgroups” dataset can be read from TensorBay.

dataset_client = gas.get_dataset("Newsgroups20")

In dataset “20 Newsgroups”, there are four Segments: 20news-18828, 20news-bydate-test and 20news-bydate-train, 20_newsgroups. Get the segment names by listing them all.

dataset_client.list_segment_names()

Get a segment by passing the required segment name.

from tensorbay.dataset import Segment

segment_20news_18828 = Segment("20news-18828", dataset_client)

In the 20news-18828 segment, there is a sequence of data, which can be obtained by index.

data = segment_20news_18828[0]

Note

If the segment or fusion segment is created without given name, then its name will be “”.

In each data, there is a sequence of Classification annotations, which can be obtained by index.

category = data.label.classification.category

There is only one label type in “20 Newsgroups” dataset, which is Classification. The information stored in category is one of the category names in “categories” list of catalog.json. See this page for more details about the structure of Classification.

Delete Dataset

To delete “20 Newsgroups”, run the following code:

gas.delete_dataset("Newsgroups20")

Read “Dataset” Class

This topic describes how to read the Dataset instance after the “BSTLD” dataset have been organized. See this page for more details about this dataset.

As mentioned in Dataset Management, a dataloader is needed to get a Dataset. However, there are already a number of dataloaders in TensorBay SDK provided by the community. Thus, instead of writing, importing an available dataloader is also feasible.

The local directory structure for “BSTLD” should be like:

<path>
    rgb/
        additional/
            2015-10-05-10-52-01_bag/
                <image_name>.jpg
                ...
            ...
        test/
            <image_name>.jpg
            ...
        train/
            2015-05-29-15-29-39_arastradero_traffic_light_loop_bag/
                <image_name>.jpg
                ...
            ...
    test.yaml
    train.yaml
    additional_train.yaml
from tensorbay.opendataset import BSTLD

dataset = BSTLD("path/to/dataset/directory")

Warning

Dataloaders provided by the community work well only with the original dataset directory structure. Downloading datasets from either official website or Graviti Opendatset Platform is highly recommended.

TensorBay supplies two methods to fetch segment from dataset.

train_segment = dataset.get_segment_by_name("train")
first_segment = dataset[0]

This segment is the same as the one read from TensorBay. In the train segment, there is a sequence of data, which can be obtained by index.

data = train_segment[3]

In each data, there is a sequence of Box2D annotations, which can be obtained by index.

label_box2d = data.label.box2d[0]
category = label_box2d.category
attributes = label_box2d.attributes

Dataset Management

This topic describes the key operations towards datasets, including:

Organize Dataset

TensorBay SDK supports methods to organize local datasets into uniform TensorBay dataset strucutre (ref). The typical steps to organize a local dataset:

  • First, write a dataloader (ref) to load the whole local dataset into a Dataset instance,

  • Second, write a catalog (ref) to store all the label meta information inside a dataset.

Note

A catalog is needed only if there is label information inside the dataset.

This part is an example for organizing a dataset.

Upload Dataset

There are two usages for the organized local dataset (i.e. the initialized Dataset instance):

  • Upload it to TensorBay.

  • Use it directly.

This section mainly discusses the uploading operation. See this example for details about the latter usage.

There are plenty of benefits of uploading local datasets to TensorBay.

  • REUSE: uploaded datasets can be reused without preprocessing again.

  • SHARING: uploaded datasets can be shared the with your team or the community.

  • VISUALIZATION: uploaded datasets can be visualized without coding.

  • VERSION CONTROL: different versions of one dataset can be uploaded and controlled conveniently.

This part is an example for uploading a dataset.

Read Dataset

Two types of datasets can be read from TensorBay:

Note

Before reading a dataset uploaded by the community, fork it first.

Note

Visit our Graviti AI Service(GAS) platform to check the dataset details, such as dataset name, version information, etc.

This part is an example for reading a dataset.

Version Control

TensorBay currently supports the linear version control. A new version of a dataset can be built upon the previous version. Figure. 4 demonstrates the relations between different versions of a dataset.

_images/version_control.png

The relations between different versions of a dataset.

Draft and Commit

The version control is based on the draft and commit.

Similar with Git, a commit is a version of a dataset, which contains the changes compared with the former commit.

Unlike Git, a draft is a new concept which represents a workspace in which changing the dataset is allowed.

In TensorBay SDK, the dataset client supplies the function of version control.

Authorization

from tensorbay import GAS

ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)
dataset_client = gas.create_dataset("DatasetName")

Create Draft

TensorBay SDK supports creating the draft straightforwardly, which is based on the current commit.

dataset_client.create_draft("draft-1")

Then the dataset client will change the status to “draft” and store the draft number. The draft number will be auto-increasing every time a draft is created.

is_draft = dataset_client.status.is_draft
# is_draft = True (True for draft, False for commit)
draft_number = dataset_client.status.draft_number
# draft_number = 1

List Drafts

The draft number can be found through listing drafts.

drafts = dataset_client.list_drafts()

Get Draft

draft = dataset_client.get_draft(draft_number=1)

Commit Draft

After the commit, the draft will be closed.

dataset_client.commit("commit-1")
is_draft = dataset_client.status.is_draft
# is_draft = False (True for draft, False for commit)
commit_id = dataset_client.status.commit_id
# commit_id = "***"

Get Commit

commit = dataset_client.get_commit(commit_id)

List Commits

commits = dataset_client.list_commits()

Checkout

# checkout to the draft.
dataset_client.checkout(draft_number=draft_number)
# checkout to the commit.
dataset_client.checkout(revision=commit_id)

Tag

TensorBay supports tagging specific commits in a dataset’s history as being important. Typically, people use this functionality to mark release revisions (v1.0, v2.0 and so on).

Before operating tags, a dataset client instance with existing commit is needed.

from tensorbay import GAS

ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)
dataset_client = gas.create_dataset("DatasetName")
dataset_client.create_draft("draft-1")
# do the modifications in this draft

Create Tag

TensorBay SDK supports three approaches of creating the tag.

First is to create the tag when committing.

dataset_client.commit("commit-1", tag="Tag-1")

Second is to create the tag straightforwardly, which is based on the current commit.

dataset_client.create_tag("Tag-1")

Third is to create tag on an existing commit.

commit_id = dataset_client.status.commit_id
dataset_client.create_tag("Tag-1", revision=commit_id)

Get Tag

tag = dataset_client.get_tag("Tag-1")

List Tags

tags = dataset_client.list_tags()

Delete Tag

dataset_client.delete_tag("Tag-1")

Fusion Dataset

Fusion dataset represents datasets with data collected from multiple sensors. Typical examples of fusion dataset are some autonomous driving datasets, such as nuScenes and KITTI-tracking.

See this page for the comparison between the fusion dataset and the dataset.

Fusion Dataset Structure

TensorBay also defines a uniform fusion dataset format. This topic explains the related concepts. The TensorBay fusion dataset format looks like:

fusion dataset
├── notes
├── catalog
│   ├── subcatalog
│   ├── subcatalog
│   └── ...
├── fusion segment
│   ├── sensors
│   │   ├── sensor
│   │   ├── sensor
│   │   └── ...
│   ├── frame
│   │   ├── data
│   │   └── ...
│   ├── frame
│   │   ├── data
│   │   └── ...
│   └── ...
├── fusion segment
└── ...

fusion dataset

Fusion dataset is the topmost concept in TensorBay format. Each fusion dataset includes a catalog and a certain number of fusion segments.

The corresponding class of fusion dataset is FusionDataset.

notes

The notes of the fusion dataset is the same as the notes (ref) of the dataset.

catalog & subcatalog in fusion dataset

The catalog of the fusion dataset is the same as the catalog (ref) of the dataset.

fusion segment

There may be several parts in a fusion dataset. In TensorBay format, each part of the fusion dataset is stored in one fusion segment. Each fusion segment contains a certain number of frames and multiple sensors, from which the data inside the fusion segment are collected.

The corresponding class of fusion segment is FusionSegment.

sensor

Sensor represents the device that collects the data inside the fusion segment. Currently, TensorBay supports four sensor types.(Table. 2)

supported sensors

Supported Sensors

Corresponding Data Type

Camera

image

FisheyeCamera

image

Lidar

point cloud

Radar

point cloud

The corresponding class of sensor is Sensor.

frame

Frame is the structural level next to the fusion segment. Each frame contains multiple data collected from different sensors at the same time.

The corresponding class of frame is Frame.

data in fusion dataset

Each data inside a frame corresponds to a sensor. And the data of the fusion dataset is the same as the data (ref) of the dataset.

CADC

This topic describes how to manage the “CADC” dataset.

“CADC” is a fusion dataset with 8 sensors including 7 cameras and 1 lidar , and has Box3D type of labels on the point cloud data. (Fig. 5). See this page for more details about this dataset.

_images/example-FusionDataset.png

The preview of a point cloud from “CADC” with Box3D labels.

Authorize a Client Instance

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)

Create Fusion Dataset

Then, create a fusion dataset client by passing the fusion dataset name and is_fusion argument to the GAS client.

gas.create_dataset("CADC", is_fusion=True)

List Dataset Names

To check if you have created “CADC” fusion dataset, you can list all your available datasets. See this page for details.

The datasets listed here include both datasets and fusion datasets.

gas.list_dataset_names()

Organize Fusion Dataset

Now we describe how to organize the “CADC” fusion dataset by the FusionDataset instance before uploading it to TensorBay. It takes the following steps to organize “CADC”.

Write the Catalog

The first step is to write the catalog. Catalog is a json file contains all label information of one dataset. See this page for more details. The only annotation type for “CADC” is Box3D, and there are 10 category types and 9 attributes types.

 1{
 2    "BOX3D": {
 3        "isTracking": true,
 4        "categories": [
 5            { "name": "Animal" },
 6            { "name": "Bicycle" },
 7            { "name": "Bus" },
 8            { "name": "Car" },
 9            { "name": "Garbage_Container_on_Wheels" },
10            { "name": "Pedestrian" },
11            { "name": "Pedestrian_With_Object" },
12            { "name": "Traffic_Guidance_Objects" },
13            { "name": "Truck" },
14            { "name": "Horse and Buggy" }
15        ],
16        "attributes": [
17            {
18                "name": "stationary",
19                "type": "boolean"
20            },
21            {
22                "name": "camera_used",
23                "enum": [0, 1, 2, 3, 4, 5, 6, 7, null]
24            },
25            {
26                "name": "state",
27                "enum": ["Moving", "Parked", "Stopped"],
28                "parentCategories": ["Car", "Truck", "Bus", "Bicycle", "Horse_and_Buggy"]
29            },
30            {
31                "name": "truck_type",
32                "enum": [
33                    "Construction_Truck",
34                    "Emergency_Truck",
35                    "Garbage_Truck",
36                    "Pickup_Truck",
37                    "Semi_Truck",
38                    "Snowplow_Truck"
39                ],
40                "parentCategories": ["Truck"]
41            },
42            {
43                "name": "bus_type",
44                "enum": ["Coach_Bus", "Transit_Bus", "Standard_School_Bus", "Van_School_Bus"],
45                "parentCategories": ["Bus"]
46            },
47            {
48                "name": "age",
49                "enum": ["Adult", "Child"],
50                "parentCategories": ["Pedestrian", "Pedestrian_With_Object"]
51            },
52            {
53                "name": "traffic_guidance_type",
54                "enum": ["Permanent", "Moveable"],
55                "parentCategories": ["Traffic_Guidance_Objects"]
56            },
57            {
58                "name": "rider_state",
59                "enum": ["With_Rider", "Without_Rider"],
60                "parentCategories": ["Bicycle"]
61            },
62            {
63                "name": "points_count",
64                "type": "integer",
65                "minimum": 0
66            }
67        ]
68    }
69}

Note

The annotations for “CADC” have tracking information, hence the value of isTracking should be set as True.

Write the Dataloader

The second step is to write the dataloader. The dataloader function of “CADC” is to manage all the files and annotations of “CADC” into a FusionDataset instance. The code block below displays the “CADC” dataloader.

  1#!/usr/bin/env python3
  2#
  3# Copyright 2021 Graviti. Licensed under MIT License.
  4#
  5# pylint: disable=invalid-name
  6# pylint: disable=missing-module-docstring
  7
  8import json
  9import os
 10from datetime import datetime
 11from typing import Any, Dict, List
 12
 13import quaternion
 14
 15from ...dataset import Data, Frame, FusionDataset
 16from ...label import LabeledBox3D
 17from ...sensor import Camera, Lidar, Sensors
 18from .._utility import glob
 19
 20DATASET_NAME = "CADC"
 21
 22
 23def CADC(path: str) -> FusionDataset:
 24    """Dataloader of the `CADC`_ dataset.
 25
 26    .. _CADC: http://cadcd.uwaterloo.ca/index.html
 27
 28    The file structure should be like::
 29
 30        <path>
 31            2018_03_06/
 32                0001/
 33                    3d_ann.json
 34                    labeled/
 35                        image_00/
 36                            data/
 37                                0000000000.png
 38                                0000000001.png
 39                                ...
 40                            timestamps.txt
 41                        ...
 42                        image_07/
 43                            data/
 44                            timestamps.txt
 45                        lidar_points/
 46                            data/
 47                            timestamps.txt
 48                        novatel/
 49                            data/
 50                            dataformat.txt
 51                            timestamps.txt
 52                ...
 53                0018/
 54                calib/
 55                    00.yaml
 56                    01.yaml
 57                    02.yaml
 58                    03.yaml
 59                    04.yaml
 60                    05.yaml
 61                    06.yaml
 62                    07.yaml
 63                    extrinsics.yaml
 64                    README.txt
 65            2018_03_07/
 66            2019_02_27/
 67
 68    Arguments:
 69        path: The root directory of the dataset.
 70
 71    Returns:
 72        Loaded `~tensorbay.dataset.dataset.FusionDataset` instance.
 73
 74    """
 75    root_path = os.path.abspath(os.path.expanduser(path))
 76
 77    dataset = FusionDataset(DATASET_NAME)
 78    dataset.notes.is_continuous = True
 79    dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
 80
 81    for date in os.listdir(root_path):
 82        date_path = os.path.join(root_path, date)
 83        sensors = _load_sensors(os.path.join(date_path, "calib"))
 84        for index in os.listdir(date_path):
 85            if index == "calib":
 86                continue
 87
 88            segment = dataset.create_segment(f"{date}/{index}")
 89            segment.sensors = sensors
 90            segment_path = os.path.join(root_path, date, index)
 91            data_path = os.path.join(segment_path, "labeled")
 92
 93            with open(os.path.join(segment_path, "3d_ann.json"), "r") as fp:
 94                # The first line of the json file is the json body.
 95                annotations = json.loads(fp.readline())
 96            timestamps = _load_timestamps(sensors, data_path)
 97            for frame_index, annotation in enumerate(annotations):
 98                segment.append(_load_frame(sensors, data_path, frame_index, annotation, timestamps))
 99
100    return dataset
101
102
103def _load_timestamps(sensors: Sensors, data_path: str) -> Dict[str, List[str]]:
104    timestamps = {}
105    for sensor_name in sensors:
106        data_folder = f"image_{sensor_name[-2:]}" if sensor_name != "LIDAR" else "lidar_points"
107        timestamp_file = os.path.join(data_path, data_folder, "timestamps.txt")
108        with open(timestamp_file, "r") as fp:
109            timestamps[sensor_name] = fp.readlines()
110
111    return timestamps
112
113
114def _load_frame(
115    sensors: Sensors,
116    data_path: str,
117    frame_index: int,
118    annotation: Dict[str, Any],
119    timestamps: Dict[str, List[str]],
120) -> Frame:
121    frame = Frame()
122    for sensor_name in sensors:
123        # The data file name is a string of length 10 with each digit being a number:
124        # 0000000000.jpg
125        # 0000000001.bin
126        data_file_name = f"{frame_index:010}"
127
128        # Each line of the timestamps file looks like:
129        # 2018-03-06 15:02:33.000000000
130        timestamp = datetime.fromisoformat(timestamps[sensor_name][frame_index][:23]).timestamp()
131        if sensor_name != "LIDAR":
132            # The image folder corresponds to different cameras, whose name is likes "CAM00".
133            # The image folder looks like "image_00".
134            camera_folder = f"image_{sensor_name[-2:]}"
135            image_file = f"{data_file_name}.png"
136
137            data = Data(
138                os.path.join(data_path, camera_folder, "data", image_file),
139                target_remote_path=f"{camera_folder}-{image_file}",
140                timestamp=timestamp,
141            )
142        else:
143            data = Data(
144                os.path.join(data_path, "lidar_points", "data", f"{data_file_name}.bin"),
145                timestamp=timestamp,
146            )
147            data.label.box3d = _load_labels(annotation["cuboids"])
148
149        frame[sensor_name] = data
150    return frame
151
152
153def _load_labels(boxes: List[Dict[str, Any]]) -> List[LabeledBox3D]:
154    labels = []
155    for box in boxes:
156        dimension = box["dimensions"]
157        position = box["position"]
158
159        attributes = box["attributes"]
160        attributes["stationary"] = box["stationary"]
161        attributes["camera_used"] = box["camera_used"]
162        attributes["points_count"] = box["points_count"]
163
164        label = LabeledBox3D(
165            size=(
166                dimension["y"],  # The "y" dimension is the width from front to back.
167                dimension["x"],  # The "x" dimension is the width from left to right.
168                dimension["z"],
169            ),
170            translation=(
171                position["x"],  # "x" axis points to the forward facing direction of the object.
172                position["y"],  # "y" axis points to the left direction of the object.
173                position["z"],
174            ),
175            rotation=quaternion.from_rotation_vector((0, 0, box["yaw"])),
176            category=box["label"],
177            attributes=attributes,
178            instance=box["uuid"],
179        )
180        labels.append(label)
181
182    return labels
183
184
185def _load_sensors(calib_path: str) -> Sensors:
186    import yaml  # pylint: disable=import-outside-toplevel
187
188    sensors = Sensors()
189
190    lidar = Lidar("LIDAR")
191    lidar.set_extrinsics()
192    sensors.add(lidar)
193
194    with open(os.path.join(calib_path, "extrinsics.yaml"), "r") as fp:
195        extrinsics = yaml.load(fp, Loader=yaml.FullLoader)
196
197    for camera_calibration_file in glob(os.path.join(calib_path, "[0-9]*.yaml")):
198        with open(camera_calibration_file, "r") as fp:
199            camera_calibration = yaml.load(fp, Loader=yaml.FullLoader)
200
201        # camera_calibration_file looks like:
202        # /path-to-CADC/2018_03_06/calib/00.yaml
203        camera_name = f"CAM{os.path.splitext(os.path.basename(camera_calibration_file))[0]}"
204        camera = Camera(camera_name)
205        camera.description = camera_calibration["camera_name"]
206
207        camera.set_extrinsics(matrix=extrinsics[f"T_LIDAR_{camera_name}"])
208
209        camera_matrix = camera_calibration["camera_matrix"]["data"]
210        camera.set_camera_matrix(matrix=[camera_matrix[:3], camera_matrix[3:6], camera_matrix[6:9]])
211
212        distortion = camera_calibration["distortion_coefficients"]["data"]
213        camera.set_distortion_coefficients(**dict(zip(("k1", "k2", "p1", "p2", "k3"), distortion)))
214
215        sensors.add(camera)
216    return sensors
create a fusion dataset

To load a fusion dataset, we first need to create an instance of FusionDataset.(L75)

Note that after creating the fusion dataset, you need to set the is_continuous attribute of notes to True,(L76) since the frames in each fusion segment is time-continuous.

load the catalog

Same as dataset, you also need to load the catalog.(L77) The catalog file “catalog.json” is in the same directory with dataloader file.

create fusion segments

In this example, we create fusion segments by dataset.create_segment(SEGMENT_NAME).(L86) We manage the data under the subfolder(L33) of the date folder(L32) into a fusion segment and combine two folder names to form a segment name, which is to ensure that frames in each segment are continuous.

add sensors to fusion segments

After constructing the fusion segment, the sensors corresponding to different data should be added to the fusion segment.(L87)

In “CADC” , there is a need for projection, so we need not only the name for each sensor, but also the calibration parameters.

And to manage all the Sensors (L81, L183) corresponding to different data, the parameters from calibration files are extracted.

Lidar sensor only has extrinsics, here we regard the lidar as the origin of the point cloud 3D coordinate system, and set the extrinsics as defaults(L189).

To keep the projection relationship between sensors, we set the transform from the camera 3D coordinate system to the lidar 3D coordinate system as Camera extrinsics(L205).

Besides extrinsics(), Camera sensor also has intrinsics(), which are used to project 3D points to 2D pixels.

The intrinsics consist of two parts, CameraMatrix and DistortionCoefficients.(L208-L211)

add frames to segment

After adding the sensors to the fusion segments, the frames should be added into the continuous segment in order(L96).

Each frame contains the data corresponding to each sensor, and each data should be added to the frame under the key of sensor name(L147).

In fusion datasets, it is common that not all data have labels. In “CADC”, only point cloud files(Lidar data) have Box3D type of labels(L145). See this page for more details about Box3D annotation details.

Note

The CADC dataloader above uses relative import(L16-L19). However, when you write your own dataloader you should use regular import. And when you want to contribute your own dataloader, remember to use relative import.

Upload Fusion Dataset

After you finish the dataloader and organize the “CADC” into a FusionDataset instance, you can upload it to TensorBay for sharing, reuse, etc.

# fusion_dataset is the one you initialized in "Organize Fusion Dataset" section
fusion_dataset_client = gas.upload_dataset(fusion_dataset, jobs=8, skip_uploaded_files=False)
fusion_dataset_client.commit("initial commit")

Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see this page for more details about version control.

Note

Commit operation can also be done on our GAS Platform.

Read Fusion Dataset

Now you can read “CADC” dataset from TensorBay.

fusion_dataset_client = gas.get_dataset("CADC", is_fusion=True)

In dataset “CADC”, there are lots of FusionSegments: 2018_03_06/0001, 2018_03_07/0001, …

You can get the segment names by list them all.

fusion_dataset_client.list_segment_names()

You can get a segment by passing the required segment name.

from tensorbay.dataset import FusionSegment

fusion_segment = FusionSegment("2018_03_06/0001", fusion_dataset_client)

Note

If the segment or fusion segment is created without given name, then its name will be “”.

In the 2018_03_06/0001 fusion segment, there are several sensors. You can get all the sensors by accessing the sensors of the FusionSegment.

sensors = fusion_segment.sensors

In each fusion segment, there are a sequence of frames. You can get one by index.

frame = fusion_segment[0]

In each frame, there are several data corresponding to different sensors. You can get each data by the corresponding sensor name.

for sensor_name in sensors:
    data = frame[sensor_name]

In “CADC”, only data under Lidar has a sequence of Box3D annotations. You can get one by index.

lidar_data = frame["LIDAR"]
label_box3d = lidar_data.label.box3d[0]
category = label_box3d.category
attributes = label_box3d.attributes

There is only one label type in “CADC” dataset, which is box3d. The information stored in category is one of the category names in “categories” list of catalog.json. The information stored in attributes is some of the attributes in “attributes” list of catalog.json.

See this page for more details about the structure of Box3D.

Delete Fusion Dataset

To delete “CADC”, run the following code:

gas.delete_dataset("CADC")

Cloud Storage

All data on TensorBay are hosted on cloud.
TensorBay supports two cloud storage modes:
  • DEFAULT CLOUD STORAGE: data are stored on TensorBay cloud

  • AUTHORIZED CLOUD STORAGE: data are stored on other providers’ cloud

Default Cloud Storage

In default cloud storage mode, data are stored on TensorBay cloud.
Create a dataset with default storage:
gas.create_dataset("DatasetName")

Authorized Cloud Storage

You can also upload data to your public cloud storage space.
Now TensorBay support following cloud providers:
  • Aliyun OSS

  • Amazon S3

  • Azure Blob

Config

See cloud storage instruction for details about how to configure cloud storage on TensorBay.

TensorBay SDK supports a method to list a user’s all previous configurations.

from tensorbay import GAS

gas = GAS("<YOUR_ACCESSKEY>")
gas.list_auth_storage_configs()

Create Authorized Storage Dataset

Create a dataset with authorized cloud storage:

dataset_client = gas.create_auth_dataset("dataset_name", "config_name", "path/to/dataset")

Note

Path to dataset need empty when create a Fusion authorized storage Dataset.

Request Configuration

This topic introduces the currently supported Config options(Table. 3) for customizing request. Note that the default settings can satisfy most use cases.

Requests Configuration Tables

Variables

Description

max_retries

The number of maximum retry times of the request.
If the request method is one of the allowed_retry_methods
and the response status is one of the allowed_retry_status,
then the request can auto-retry max_retries times.
Scenario: Enlarge it when under poor network quality.
Default: 3 times.

allowed_retry_methods

The allowed methods for retrying request.
Default: [“HEAD”, “OPTIONS”, “POST”, “PUT”]

allowed_retry_status

The allowed status for retrying request.
Default: [429, 500, 502, 503, 504]

timeout

The number of seconds before the request times out.
Scenario: Enlarge it when under poor network quality.
Default: 30 seconds.

is_internal

Whether the request is from internal or not.
Scenario: Set it to True for quicker network speed when datasets
and cloud servers are in the same region.
See Use Internal Endpoint for details.
Default: False

Usage

from tensorbay import GAS
from tensorbay.client import config

# Enlarge timeout and max_retries of configuration.
config.timeout = 40
config.max_retries = 4

gas = GAS("<YOUR_ACCESSKEY>")

# The configs will apply to all the requests sent by TensorBay SDK.
gas.list_dataset_names()

Use Internal Endpoint

This topic describes how to use the internal endpoint when using TensorBay.

Region and Endpoint

For a cloud storage service platform, a region is a collection of its resources in a geographic area. Each region is isolated and independent of the other regions. Endpoints are the domain names that other services can use to access the cloud platform. Thus, there are mappings between regions and endpoints. Take OSS as an example, the endpoint for region China (Hangzhou) is oss-cn-hangzhou.aliyuncs.com.

Actually, the endpoint mentioned above is the public endpoint. There is another kind of endpoint called the internal endpoint. The internal endpoint can be used by other cloud services in the same region to access cloud storage services. For example, the internal endpoint for region China (Hangzhou) is oss-cn-hangzhou-internal.aliyuncs.com.

Much quicker internet speed is the most important benefit of using an internal endpoint. Currently, TensorBay supports using the internal endpoint of OSS for operations such as uploading and reading datasets.

Usage

If the endpoint of the cloud server is the same as the TensorBay storage, set is_internal to True to use the internal endpoint for obtaining a faster network speed.

from tensorbay import GAS
from tensorbay.client import config
from tensorbay.dataset import Data, Dataset

# Set is_internal to True for using internal endpoint.
config.is_internal = True

gas = GAS("<YOUR_ACCESSKEY>")

# Organize the local dataset by the "Dataset" class before uploading.
dataset = Dataset("DatasetName")

segment = dataset.create_segment()
segment.append(Data("0000001.jpg"))
segment.append(Data("0000002.jpg"))

# All the data will be uploaded through internal endpoint.
dataset_client = gas.upload_dataset(dataset)

dataset_client.commit("Initial commit")

Getting Started with CLI

The TensorBay Command Line Interface is a tool to operate on datasets. It supports Windows, Linux, and Mac platforms.

TensorBay CLI can:

  • Create and delete dataset.

  • List data, segments and datasets on TensorBay.

  • Upload data to TensorBay.

Installation

To use TensorBay CLI, please install TensorBay SDK first.

$ pip3 install tensorbay

TBRN

TensorBay Resource Name(TBRN) uniquely defines the data stored in TensorBay. TBRN begins with tb:. Default segment can be defined as "" (empty string). The following is the general format for TBRN:

tb:[dataset_name]:[segment_name]://[remote_path]

Configuration

An accessKey is used for identification when using TensorBay to operate datasets.

Set the accessKey into configuration:

$ gas config <YOUR_ACCESSKEY>

To show configuration information:

$ gas config

Dataset Management

TensorBay CLI offers following sub-commands to manage dataset. (Table. 4)

Sub-Commands

Sub-Commands

Description

create

Create a dataset

ls

List data, segments and datasets

delete

Delete a dataset

Create dataset

The basic structure of the sub-command to create a dataset with given name:

$ gas create [tbrn]

tbrn:
    tb:[dataset_name]

Take BSTLD for example:

$ gas create tb:BSTLD

Read Dataset

The basic structure of the sub-command to List data, segments and datasets:

$ gas ls [Options] [tbrn]

Options:
  -a, --all     List all files under all segments.
                 Only works when [tbrn] is tb:[dataset_name].

tbrn:
  None
  tb:[dataset_name]
  tb:[dataset_name]:[segment_name]
  tb:[dataset_name]:[segment_name]://[remote_path]

If the path is empty, list the names of all datasets. The following ways can list data:

1. List the names of all datasets.
$ gas ls
2. List the names of all segments of BSTLD.
$ gas ls tb:BSTLD
3. List all the files in all the segments of BSTLD.
$ gas ls -a tb:BSTLD
4. List all the files in the train segment of BSTLD.
$ gas ls tb:BSTLD:train

Delete Dataset

The basic structure of the sub-command to delete the dataset with given name:

$ gas delete [tbrn]

tbrn:
  tb:[dataset_name]

Take BSTLD for example:

$ gas delete tb:BSTLD

Glossary

accesskey

An accesskey is an access credential for identification when using TensorBay to operate on your dataset.

To obtain an accesskey, log in to Graviti AI Service(GAS) and visit the developer page to create one.

For the usage of accesskey via Tensorbay SDK or CLI, please see SDK authorization or CLI configration.

dataset

A uniform dataset format defined by TensorBay, which only contains one type of data collected from one sensor or without sensor information. According to the time continuity of data inside the dataset, a dataset can be a discontinuous dataset or a continuous dataset. Notes can be used to specify whether a dataset is continuous.

The corresponding class of dataset is Dataset.

See Dataset Structure for more details.

fusion dataset

A uniform dataset format defined by Tensorbay, which contains data collected from multiple sensors.

According to the time continuity of data inside the dataset, a fusion dataset can be a discontinuous fusion dataset or a continuous fusion dataset. Notes can be used to specify whether a fusion dataset is continuous.

The corresponding class of fusion dataset is FusionDataset.

See Fusion Dataset Structure for more details.

dataloader

A function that can organize files within a formatted folder into a Dataset instance or a FusionDataset instance.

The only input of the function should be a str indicating the path to the folder containing the dataset, and the return value should be the loaded Dataset or FusionDataset instance.

Here are some dataloader examples of datasets with different label types and continuity(Table. 5).

Dataloaders

Dataloaders

Description

LISA Traffic Light Dataloader

This example is the dataloader of LISA Traffic Light Dataset,
which is a continuous dataset with Box2D label.

Dogs vs Cats Dataloader

This example is the dataloader of Dogs vs Cats Dataset,
which is a dataset with Classification label.

BSTLD Dataloader

This example is the dataloader of BSTLD Dataset,
which is a dataset with Box2D label.

Neolix OD Dataloader

This example is the dataloader of Neolix OD Dataset,
which is a dataset with Box3D label.

Leeds Sports Pose Daraloader

This example is the dataloader of Leeds Sports Pose Dataset,
which is a dataset with Keypoints2D label.

Note

The name of the dataloader function is a unique indentification of the dataset. It is in upper camel case and is generally obtained by removing special characters from the dataset name.

Take Dogs vs Cats dataset as an example, the name of its dataloader function is DogsVsCats().

See more dataloader examples in tensorbay.opendataset.

TBRN

TBRN is the abbreviation for TensorBay Resource Name, which represents the data or a collection of data stored in TensorBay uniquely.

Note that TBRN is only used in CLI.

TBRN begins with tb:, followed by the dataset name, the segment name and the file name.

The following is the general format for TBRN:

tb:[dataset_name]:[segment_name]://[remote_path]

Suppose there is an image 000000.jpg under the default segment of a dataset named example, then the TBRN of this image should be:

tb:example:://000000.jpg

Note

Default segment is defined as "" (empty string).

commit

Similar with Git, a commit is a version of a dataset, which contains the changes compared with the former commit. A certain commit of a dataset can be accessed by passing the corresponding commit ID.

A commit is readable, but is not writable. Thus, only read operations such as getting catalog, files and labels are allowed. To change a dataset, please create a new commit. See draft for details.

On the other hand, “commit” also represents the action to save the changes inside a draft into a commit.

draft

Similar with Git, a draft is a workspace in which changing the dataset is allowed.

A draft is created based on a commit, and the changes inside it will be made into a commit.

There are scenarios when modifications of a dataset are required, such as correcting errors, enlarging dataset, adding more types of labels, etc. Under these circumstances, create a draft, edit the dataset and commit the draft.

tag

TensorBay SDK has the ability to tag the specific commit in a dataset’s history as being important. Typically, people use this functionality to mark release points (v1.0, v2.0 and so on).

Dataset Structure

For ease of use, TensorBay defines a uniform dataset format. This topic explains the related concepts. The TensorBay dataset format looks like:

dataset
├── notes
├── catalog
│   ├── subcatalog
│   ├── subcatalog
│   └── ...
├── segment
│   ├── data
│   ├── data
│   └── ...
├── segment
│   ├── data
│   ├── data
│   └── ...
└── ...

dataset

Dataset is the topmost concept in TensorBay dataset format. Each dataset includes a catalog and a certain number of segments.

The corresponding class of dataset is Dataset.

notes

Notes contains the basic information of a dataset, including

  • the time continuity of the data inside the dataset

  • the fields of bin point cloud files inside the dataset

The corresponding class of notes is Notes.

catalog

Catalog is used for storing label meta information. It collects all the labels corresponding to a dataset. There could be one or several subcatalogs (Label Format) under one catalog. Each Subcatalog only stores label meta information of one label type, including whether the corresponding annotation has tracking information.

Here are some catalog examples of datasets with different label types and a dataset with tracking annotations(Table. 6).

Catalogs

Catalogs

Description

elpv Catalog

This example is the catalog of elpv Dataset,
which is a dataset with Classification label.

BSTLD Catalog

This example is the catalog of BSTLD Dataset,
which is a dataset with Box2D label.

Neolix OD Catalog

This example is the catalog of Neolix OD Dataset,
which is a dataset with Box3D label.

Leeds Sports Pose Catalog

This example is the catalog of Leeds Sports Pose Dataset,
which is a dataset with Keypoints2D label.

NightOwls Catalog

This example is the catalog of NightOwls Dataset,
which is a dataset with tracking Box2D label.

Note that catalog is not needed if there is no label information in a dataset.

segment

There may be several parts in a dataset. In TensorBay format, each part of the dataset is stored in one segment. For example, all training samples of a dataset can be organized in a segment named “train”.

The corresponding class of segment is Segment.

data

Data is the structural level next to segment. One data contains one dataset sample and its related labels, as well as any other information such as timestamp.

The corresponding class of data is Data.

Label Format

TensorBay supports multiple types of labels.

Each Data instance can have multiple types of label.

And each type of label is supported with a specific label class, and has a corresponding subcatalog class.

supported label types

supported label types

label classes

subcatalog classes

Classification

Classification

ClassificationSubcatalog

Box2D

LabeledBox2D

Box2DSubcatalog

Box3D

LabeledBox3D

Box3DSubcatalog

Keypoints2D

LabeledKeypoints2D

Keypoints2DSubcatalog

Sentence

LabeledSentence

SetenceSubcatalog

Common Label Properties

Different types of labels contain differenct aspects of annotation information about the data. Some are more general, and some are unique to a specific label type.

Three common properties of a label will be introduced first, and the unique ones will be explained under the corresponding type of label.

Take a 2D box label as an example:

>>> from tensorbay.label import LabeledBox2D
>>> label = LabeledBox2D(
... 10, 20, 30, 40,
... category="category",
... attributes={"attribute_name": "attribute_value"},
... instance="instance_ID"
... )
>>> label
LabeledBox2D(10, 20, 30, 40)(
  (category): 'category',
  (attributes): {...},
  (instance): 'instance_ID'
)

category

Category is a string indicating the class of the labeled object.

>>> label.category
'data_category'

attributes

Attributes are the additional information about this data, and there is no limit on the number of attributes.

The attribute names and values are stored in key-value pairs.

>>> label.attributes
{'attribute_name': 'attribute_value'}

instance

Instance is the unique id for the object inside of the label, which is mostly used for tracking tasks.

>>> label.instance
"instance_ID"

Common Subcatalog Properties

Before creating a label or adding a label to data, it’s necessary to define the annotation rules of the specific label type inside the dataset. This task is done by subcatalog.

Different label types have different subcatalog classes.

Take Box2DSubcatalog as an example to describe some common features of subcatalog.

>>> from tensorbay.label import Box2DSubcatalog
>>> box2d_subcatalog = Box2DSubcatalog(is_tracking=True)
>>> box2d_subcatalog
Box2DSubcatalog(
   (is_tracking): True
)

tracking information

If the label of this type in the dataset has the information of instance IDs, then the subcatalog should set a flag to show its support for tracking information.

Pass True to the is_tracking parameter while creating the subcatalog, or set the is_tracking attr after initialization.

>>> box2d_subcatalog.is_tracking = True

category information

If the label of this type in the dataset has category, then the subcatalog should contain all the optional categories.

Each category of a label appeared in the dataset should be within the categories of the subcatalog.

Category information can be added to the subcatalog.

>>> box2d_subcatalog.add_category(name="cat", description="The Flerken")
>>> box2d_subcatalog.categories
NameOrderedDict {
  'cat': CategoryInfo("cat")
}

CategoryInfo is used to describe a category. See details in CategoryInfo.

attributes information

If the label of this type in the dataset has attributes, then the subcatalog should contain all the rules for different attributes.

Each attributes of a label appeared in the dataset should follow the rules set in the attributes of the subcatalog.

Attribute information ca be added to the subcatalog.

>>> box2d_subcatalog.add_attribute(
... name="attribute_name",
... type_="number",
... maximum=100,
... minimum=0,
... description="attribute description"
... )
>>> box2d_subcatalog.attributes
NameOrderedDict {
  'attribute_name': AttributeInfo("attribute_name")(...)
}

AttributeInfo is used to describe the rules of an attributes, which refers to the Json schema method.

See details in AttributeInfo.

Other unique subcatalog features will be explained in the corresponding label type section.

Classification

Classification is to classify data into different categories.

It is the annotation for the entire file, so each data can only be assigned with one classification label.

Classification labels applies to different types of data, such as images and texts.

The structure of one classification label is like:

{
    "category": <str>
    "attributes": {
        <key>: <value>
        ...
        ...
    }
}

To create a Classification label:

>>> from tensorbay.label import Classification
>>> classification_label = Classification(
... category="data_category",
... attributes={"attribute_name": "attribute_value"}
... )
>>> classification_label
Classification(
  (category): 'data_category',
  (attributes): {...}
)

Classification.category

The category of the entire data file. See category for details.

Classification.attributes

The attributes of the entire data file. See attributes for details.

Note

There must be either a category or attributes in one classification label.

ClassificationSubcatalog

Before adding the classification label to data, ClassificationSubcatalog should be defined.

ClassificationSubcatalog has categories and attributes information, see category information and attributes information for details.

To add a Classification label to one data:

>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.classification = classification_label

Note

One data can only have one classification label.

Box2D

Box2D is a type of label with a 2D bounding box on an image. It’s usually used for object detection task.

Each data can be assigned with multiple Box2D label.

The structure of one Box2D label is like:

{
    "box2d": {
        "xmin": <float>
        "ymin": <float>
        "xmax": <float>
        "ymax": <float>
    },
    "category": <str>
    "attributes": {
        <key>: <value>
        ...
        ...
    },
    "instance": <str>
}

To create a LabeledBox2D label:

>>> from tensorbay.label import LabeledBox2D
>>> box2d_label = LabeledBox2D(
... xmin, ymin, xmax, ymax,
... category="category",
... attributes={"attribute_name": "attribute_value"},
... instance="instance_ID"
... )
>>> box2d_label
LabeledBox2D(xmin, ymin, xmax, ymax)(
  (category): 'category',
  (attributes): {...}
  (instance): 'instance_ID'
)

Box2D.box2d

LabeledBox2D extends Box2D.

To construct a LabeledBox2D instance with only the geometry information, use the coordinates of the top-left and bottom-right vertexes of the 2D bounding box, or the coordinate of the top-left vertex, the height and the width of the bounding box.

>>> LabeledBox2D(10, 20, 30, 40)
LabeledBox2D(10, 20, 30, 40)()
>>> LabeledBox2D.from_xywh(x=10, y=20, width=20, height=20)
LabeledBox2D(10, 20, 30, 40)()

It contains the basic geometry information of the 2D bounding box.

>>> box2d_label.xmin
10
>>> box2d_label.ymin
20
>>> box2d_label.xmax
30
>>> box2d_label.ymax
40
>>> box2d_label.br
Vector2D(30, 40)
>>> box2d_label.tl
Vector2D(10, 20)
>>> box2d_label.area()
400

Box2D.category

The category of the object inside the 2D bounding box. See category for details.

Box2D.attributes

Attributes are the additional information about this object, which are stored in key-value pairs. See attributes for details.

Box2D.instance

Instance is the unique ID for the object inside of the 2D bounding box, which is mostly used for tracking tasks. See instance for details.

Box2DSubcatalog

Before adding the Box2D labels to data, Box2DSubcatalog should be defined.

Box2DSubcatalog has categories, attributes and tracking information, see category information, attributes information and tracking information for details.

To add a LabeledBox2D label to one data:

>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.box2d = []
>>> data.label.box2d.append(box2d_label)

Note

One data may contain multiple Box2D labels, so the Data.label.box2d must be a list.

Box3D

Box3D is a type of label with a 3D bounding box on point cloud, which is often used for 3D object detection.

Currently, Box3D labels applies to point data only.

Each point cloud can be assigned with multiple Box3D label.

The structure of one Box3D label is like:

{
    "box3d": {
        "translation": {
            "x": <float>
            "y": <float>
            "z": <float>
        },
        "rotation": {
            "w": <float>
            "x": <float>
            "y": <float>
            "z": <float>
        },
        "size": {
            "x": <float>
            "y": <float>
            "z": <float>
        }
    },
    "category": <str>
    "attributes": {
        <key>: <value>
        ...
        ...
    },
    "instance": <str>
}

To create a LabeledBox3D label:

>>> from tensorbay.label import LabeledBox3D
>>> box3d_label = LabeledBox3D(
... size=[10, 20, 30],
... translation=[0, 0, 0],
... rotation=[1, 0, 0, 0],
... category="category",
... attributes={"attribute_name": "attribute_value"},
... instance="instance_ID"
... )
>>> box3d_label
LabeledBox3D(
  (size): Vector3D(10, 20, 30),
  (translation): Vector3D(0, 0, 0),
  (rotation): quaternion(1.0, 0.0, 0.0, 0.0),
  (category): 'category',
  (attributes): {...},
  (instance): 'instance_ID'
)

Box3D.box3d

LabeledBox3D extends Box3D.

To construct a LabeledBox3D instance with only the geometry information, use the transform matrix and the size of the 3D bounding box, or use translation and rotation to represent the transform of the 3D bounding box.

>>> LabeledBox3D(
... size=[10, 20, 30],
... transform_matrix=[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]],
... )
LabeledBox3D(
  (size): Vector3D(10, 20, 30)
  (translation): Vector3D(0, 0, 0),
  (rotation): quaternion(1.0, -0.0, -0.0, -0.0),
)
>>> LabeledBox3D(
... size=[10, 20, 30],
... translation=[0, 0, 0],
... rotation=[1, 0, 0, 0],
... )
LabeledBox3D(
  (size): Vector3D(10, 20, 30)
  (translation): Vector3D(0, 0, 0),
  (rotation): quaternion(1.0, 0.0, 0.0, 0.0),
)

It contains the basic geometry information of the 3D bounding box.

>>> box3d_label.transform
Transform3D(
  (translation): Vector3D(0, 0, 0),
  (rotation): quaternion(1.0, 0.0, 0.0, 0.0)
)
>>> box3d_label.translation
Vector3D(0, 0, 0)
>>> box3d_label.rotation
quaternion(1.0, 0.0, 0.0, 0.0)
>>> box3d_label.size
Vector3D(10, 20, 30)
>>> box3d_label.volumn()
6000

Box3D.category

The category of the object inside the 3D bounding box. See category for details.

Box3D.attributes

Attributes are the additional information about this object, which are stored in key-value pairs. See attributes for details.

Box3D.instance

Instance is the unique id for the object inside of the 3D bounding box, which is mostly used for tracking tasks. See instance for details.

Box3DSubcatalog

Before adding the Box3D labels to data, Box3DSubcatalog should be defined.

Box3DSubcatalog has categories, attributes and tracking information, see category information, attributes information and tracking information for details.

To add a LabeledBox3D label to one data:

>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.box3d = []
>>> data.label.box3d.append(box3d_label)

Note

One data may contain multiple Box3D labels, so the Data.label.box3d must be a list.

Keypoints2D

Keypoints2D is a type of label with a set of 2D keypoints. It is often used for animal and human pose estimation.

Keypoints2D labels mostly applies to images.

Each data can be assigned with multiple Keypoints2D labels.

The structure of one Keypoints2D label is like:

{
    "keypoints2d": [
        { "x": <float>
          "y": <float>
          "v": <int>
        },
        ...
        ...
    ],
    "category": <str>
    "attributes": {
        <key>: <value>
        ...
        ...
    },
    "instance": <str>
}

To create a LabeledKeypoints2D label:

>>> from tensorbay.label import LabeledKeypoints2D
>>> keypoints2d_label = LabeledKeypoints2D(
... [[10, 20], [15, 25], [20, 30]],
... category="category",
... attributes={"attribute_name": "attribute_value"},
... instance="instance_ID"
... )
>>> keypoints2d_label
LabeledKeypoints2D [
  Keypoint2D(10, 20),
  Keypoint2D(15, 25),
  Keypoint2D(20, 30)
](
  (category): 'category',
  (attributes): {...},
  (instance): 'instance_ID'
)

Keypoints2D.keypoints2d

LabeledKeypoints2D extends Keypoints2D.

To construct a LabeledKeypoints2D instance with only the geometry information, The coordinates of the set of 2D keypoints are necessary. The visible status of each 2D keypoint is optional.

>>> LabeledKeypoints2D([[10, 20], [15, 25], [20, 30]])
LabeledKeypoints2D [
  Keypoint2D(10, 20),
  Keypoint2D(15, 25),
  Keypoint2D(20, 30)
]()
>>> LabeledKeypoints2D([[10, 20, 0], [15, 25, 1], [20, 30, 1]])
LabeledKeypoints2D [
  Keypoint2D(10, 20, 0),
  Keypoint2D(15, 25, 1),
  Keypoint2D(20, 30, 1)
]()

It contains the basic geometry information of the 2D keypoints, which can be obtained by index.

>>> keypoints2d_label[0]
Keypoint2D(10, 20)

Keypoints2D.category

The category of the object inside the 2D keypoints. See category for details.

Keypoints2D.attributes

Attributes are the additional information about this object, which are stored in key-value pairs. See attributes for details.

Keypoints2D.instance

Instance is the unique ID for the object inside of the 2D keypoints, which is mostly used for tracking tasks. See instance for details.

Keypoints2DSubcatalog

Before adding 2D keypoints labels to the dataset, Keypoints2DSubcatalog should be defined.

Besides attributes information, category information, tracking information in Keypoints2DSubcatalog, it also has keypoints to describe a set of keypoints corresponding to certain categories.

>>> from tensorbay.label import Keypoints2DSubcatalog
>>> keypoints2d_subcatalog = Keypoints2DSubcatalog()
>>> keypoints2d_subcatalog.add_keypoints(
... 3,
... names=["head", "body", "feet"],
... skeleton=[[0, 1], [1, 2]],
... visible="BINARY",
... parent_categories=["cat"],
... description="keypoints of cats"
... )
>>> keypoints2d_subcatalog.keypoints
[KeypointsInfo(
   (number): 3,
   (names): [...],
   (skeleton): [...],
   (visible): 'BINARY',
   (parent_categories): [...]
 )]

KeypointsInfo is used to describe a set of 2D keypoints.

The first parameter of add_keypoints() is the number of the set of 2D keypoints, which is required.

The names is a list of string representing the names for each 2D keypoint, the length of which is consistent with the number.

The skeleton is a two-dimensional list indicating the connection between the keypoints.

The visible is the visible status that limits the v of Keypoint2D. It can only be “BINARY” or “TERNARY”.

See details in Keypoint2D.

The parent_categories is a list of categories indicating to which category the keypoints rule applies.

Mostly, parent_categories is not given, which means the keypoints rule applies to all the categories of the entire dataset.

To add a LabeledKeypoints2D label to one data:

>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.keypoints2d = []
>>> data.label.keypoints2d.append(keypoints2d_label)

Note

One data may contain multiple Keypoints2D labels, so the Data.label.keypoints2d must be a list.

Sentence

Sentence label is the transcripted sentence of a piece of audio, which is often used for autonomous speech recognition.

Each audio can be assigned with multiple sentence labels.

The structure of one sentence label is like:

{
    "sentence": [
        {
            "text":  <str>
            "begin": <float>
            "end":   <float>
        }
        ...
        ...
    ],
    "spell": [
        {
            "text":  <str>
            "begin": <float>
            "end":   <float>
        }
        ...
        ...
    ],
    "phone": [
        {
            "text":  <str>
            "begin": <float>
            "end":   <float>
        }
        ...
        ...
    ],
    "attributes": {
        <key>: <value>,
        ...
        ...
    }
}

To create a LabeledSentence label:

>>> from tensorbay.label import LabeledSentence
>>> from tensorbay.label import Word
>>> sentence_label = LabeledSentence(
... sentence=[Word("text", 1.1, 1.6)],
... spell=[Word("spell", 1.1, 1.6)],
... phone=[Word("phone", 1.1, 1.6)],
... attributes={"attribute_name": "attribute_value"}
... )
>>> sentence_label
LabeledSentence(
  (sentence): [
    Word(
      (text): 'text',
      (begin): 1.1,
      (end): 1.6
    )
  ],
  (spell): [
    Word(
      (text): 'text',
      (begin): 1.1,
      (end): 1.6
    )
  ],
  (phone): [
    Word(
      (text): 'text',
      (begin): 1.1,
      (end): 1.6
    )
  ],
  (attributes): {
    'attribute_name': 'attribute_value'
  }

Sentence.sentence

The sentence of a LabeledSentence is a list of Word, representing the transcripted sentence of the audio.

Sentence.spell

The spell of a LabeledSentence is a list of Word, representing the spell within the sentence.

It is only for Chinese language.

Sentence.phone

The phone of a LabeledSentence is a list of Word, representing the phone of the sentence label.

Word

Word is the basic component of a phonetic transcription sentence, containing the content of the word, the start and the end time in the audio.

>>> from tensorbay.label import Word
>>> Word("text", 1.1, 1.6)
Word(
  (text): 'text',
  (begin): 1,
  (end): 2
)

sentence, spell, and phone of a sentence label all compose of Word.

Sentence.attributes

The attributes of the transcripted sentence. See attributes information for details.

SentenceSubcatalog

Before adding sentence labels to the dataset, SetenceSubcatalog should be defined.

Besides attributes information in SetenceSubcatalog, it also has is_sample, sample_rate and lexicon. to describe the transcripted sentences of the audio.

>>> from tensorbay.label import SentenceSubcatalog
>>> sentence_subcatalog = SentenceSubcatalog(
... is_sample=True,
... sample_rate=5,
... lexicon=[["word", "spell", "phone"]]
... )
>>> sentence_subcatalog
SentenceSubcatalog(
  (is_sample): True,
  (sample_rate): 5,
  (lexicon): [...]
)
>>> sentence_subcatalog.lexicon
[['word', 'spell', 'phone']]

The is_sample is a boolen value indicating whether time format is sample related.

The sample_rate is the number of samples of audio carried per second. If is_sample is Ture, then sample_rate must be provided.

The lexicon is a list consists all of text and phone.

Besides giving the parameters while initialing SetenceSubcatalog, it’s also feasible to set them after initialization.

>>> from tensorbay.label import SentenceSubcatalog
>>> sentence_subcatalog = SentenceSubcatalog()
>>> sentence_subcatalog.is_sample = True
>>> sentence_subcatalog.sample_rate = 5
>>> sentence_subcatalog.append_lexicon(["text", "spell", "phone"])
>>> sentence_subcatalog
SentenceSubcatalog(
  (is_sample): True,
  (sample_rate): 5,
  (lexicon): [...]
)

To add a LabeledSentence label to one data:

>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.sentence = []
>>> data.label.sentence.append(sentence_label)

Note

One data may contain multiple Sentence labels, so the Data.label.sentence must be a list.

Exceptions

TensorBay SDK defines a series of custom exceptions.

Base Exceptions

The following exceptions are used as the base classes for other concrete exceptions.

TensorBayException

TensorBayException is the base class for TensorBay SDK custom exceptions.

ClientError

ClientError is the base class for custom exceptions in client module.

OpenDatasetError

OpenDatasetError is the base class for custom exceptions in opendataset module.

Concrete Exceptions

CommitStatusError

CommitStatusError defines the exception for illegal commit status. Raised when the status is draft or commit, while the required status is commit or draft.

DatasetTypeError

DatasetTypeError defines the exception for incorrect type of the requested dataset. Raised when the type of the required dataset is inconsistent with the input “is_fusion” parameter while getting dataset from TensorBay.

FrameError

FrameError defines the exception for incorrect frame id. Raised when the frame id and timestamp of a frame conflicts or missing.

ResponseError

ResponseError defines the exception for post response error. Raised when the response from TensorBay has error.

TBRNError

TBRNError defines the exception for invalid TBRN. Raised when the TBRN format is incorrect.

NoFileError

NoFileError defines the exception for no matching file found in the opendataset directory.

FileStructureError

FileStructureError defines the exception for incorrect file structure in the opendataset directory.

Exception hierarchy

The class hierarchy for TensorBay custom exceptions is:

+-- TensorBayException
    +-- ClientError
        +-- CommitStatusError
        +-- DatasetTypeError
        +-- FrameError
        +-- ResponseError
    +-- TBRNError
    +-- OpenDatasetError
        +-- NoFileError
        +-- FileStructureError

API Reference

tensorbay.client

tensorbay.client.cli

Command-line interface.

Use ‘gas’ + COMMAND in terminal to operate on datasets.

Use ‘gas config’ to configure environment.

Use ‘gas create’ to create a dataset.

Use ‘gas delete’ to delete a dataset.

Use ‘gas ls’ to list data.

Use ‘gas cp’ to upload data.

Use ‘gas rm’ to delete data.

tensorbay.client.dataset

Class DatasetClientBase, DatasetClient and FusionDatasetClient.

DatasetClient is a remote concept. It contains the information needed for determining a unique dataset on TensorBay, and provides a series of methods within dataset scope, such as DatasetClient.get_segment(), DatasetClient.list_segment_names(), DatasetClient.commit, and so on. In contrast to the DatasetClient, Dataset is a local concept. It represents a dataset created locally. Please refer to Dataset for more information.

Similar to the DatasetClient, the FusionDatasetClient represents the fusion dataset on TensorBay, and its local counterpart is FusionDataset. Please refer to FusionDataset for more information.

class tensorbay.client.dataset.DatasetClient(name: str, dataset_id: str, gas_client: GAS, *, commit_id: Optional[str] = None)[source]

Bases: tensorbay.client.dataset.DatasetClientBase

This class defines DatasetClient.

DatasetClient inherits from DataClientBase and provides more methods within a dataset scope, such as DatasetClient.get_segment(), DatasetClient.commit and DatasetClient.upload_segment(). In contrast to FusionDatasetClient, a DatasetClient has only one sensor.

create_segment(name: str = '')tensorbay.client.segment.SegmentClient[source]

Create a segment with the given name.

Parameters

name – Segment name, can not be “_default”.

Returns

The created SegmentClient with given name.

Raises

TypeError – When the segment exists.

get_or_create_segment(name: str = '')tensorbay.client.segment.SegmentClient[source]

Get or create a segment with the given name.

Parameters

name – Segment name, can not be “_default”.

Returns

The created SegmentClient with given name.

get_segment(name: str = '')tensorbay.client.segment.SegmentClient[source]

Get a segment in a certain commit according to given name.

Parameters

name – The name of the required segment.

Returns

~tensorbay.client.segment.SegmentClient.

Return type

The required class

Raises

GASSegmentError – When the required segment does not exist.

upload_segment(segment: tensorbay.dataset.segment.Segment, *, jobs: int = 1, skip_uploaded_files: bool = False, quiet: bool = False)tensorbay.client.segment.SegmentClient[source]

Upload a Segment to the dataset.

This function will upload all info contains in the input Segment, which includes:

  • Create a segment using the name of input Segment.

  • Upload all Data in the Segment to the dataset.

Parameters
  • segment – The Segment contains the information needs to be upload.

  • jobs – The number of the max workers in multi-thread uploading method.

  • skip_uploaded_files – True for skipping the uploaded files.

  • quiet – Set to True to stop showing the upload process bar.

Returns

The SegmentClient used for uploading the data in the segment.

class tensorbay.client.dataset.DatasetClientBase(name: str, dataset_id: str, gas_client: GAS, *, commit_id: Optional[str] = None)[source]

Bases: object

This class defines the basic concept of the dataset client.

A DatasetClientBase contains the information needed for determining a unique dataset on TensorBay, and provides a series of method within dataset scope, such as DatasetClientBase.list_segment_names() and DatasetClientBase.upload_catalog().

Parameters
  • name – Dataset name.

  • dataset_id – Dataset ID.

  • gas_client – The initial client to interact between local and TensorBay.

name

Dataset name.

dataset_id

Dataset ID.

status

The status of the dataset client.

checkout(revision: Optional[str] = None, draft_number: Optional[int] = None)None[source]

Checkout to commit or draft.

Parameters
  • revision – The information to locate the specific commit, which can be the commit id, the branch, or the tag.

  • draft_number – The draft number.

Raises

TypeError – When both commit and draft number are provided or neither.

commit(message: str, *, tag: Optional[str] = None)None[source]

Commit the draft.

Parameters
  • message – The commit message.

  • tag – A tag for current commit.

create_draft(title: Optional[str] = None)int[source]

Create the draft.

Parameters

title – The draft title.

Returns

The draft number of the created draft.

create_tag(name: str, revision: Optional[str] = None)None[source]

Create the tag for a commit.

Parameters
  • name – The tag name to be created for the specific commit.

  • revision – The information to locate the specific commit, which can be the commit id, the branch name, or the tag name. If the revision is not given, create the tag for the current commit.

delete_segment(name: str)None[source]

Delete a segment of the draft.

Parameters

name – Segment name.

delete_tag(name: str)None[source]

Delete a tag.

Parameters

name – The tag name to be deleted for the specific commit.

get_branch(name: str)tensorbay.client.struct.Branch[source]

Get the branch with the given name.

Parameters

name – The required branch name.

Returns

The Branch instance with the given name.

Raises

TypeError – When the required branch does not exist or the given branch is illegal.

get_catalog()tensorbay.label.catalog.Catalog[source]

Get the catalog of the certain commit.

Returns

Required Catalog.

get_commit(revision: Optional[str] = None)tensorbay.client.struct.Commit[source]

Get the certain commit with the given revision.

Parameters

revision – The information to locate the specific commit, which can be the commit id, the branch name, or the tag name. If is not given, get the current commit.

Returns

The Commit instance with the given revision.

Raises

TypeError – When the required commit does not exist or the given revision is illegal.

get_draft(draft_number: Optional[int] = None)tensorbay.client.struct.Draft[source]

Get the certain draft with the given draft number.

Parameters

draft_number – The required draft number. If is not given, get the current draft.

Returns

The Draft instance with the given number.

Raises

TypeError – When the required draft does not exist or the given draft number is illegal.

get_notes()tensorbay.dataset.dataset.Notes[source]

Get the notes.

Returns

The Notes.

get_tag(name: str)tensorbay.client.struct.Tag[source]

Get the certain tag with the given name.

Parameters

name – The required tag name.

Returns

The Tag instance with the given name.

Raises

TypeError – When the required tag does not exist or the given tag is illegal.

list_branches(**kwargs: int)tensorbay.client.requests.PagingList[tensorbay.client.struct.Branch][source]

List the information of branches.

Parameters

kwargs – For deprecated keyword arguments: “start” and “stop”.

Returns

The PagingList of branches.

list_commits(revision: Optional[str] = None, **kwargs: int)tensorbay.client.requests.PagingList[tensorbay.client.struct.Commit][source]

List the commits.

Parameters
  • revision – The information to locate the specific commit, which can be the commit id, the branch name, or the tag name. If is given, list the commits before the given commit. If is not given, list the commits before the current commit.

  • kwargs – For deprecated keyword arguments: “start” and “stop”.

Returns

The PagingList of commits.

list_draft_titles_and_numbers(*, start: int = 0, stop: int = 9223372036854775807)Iterator[Dict[str, Any]][source]

List the dict containing title and number of drafts.

Deprecated since version 1.2.0: Will be removed in version 1.5.0. Use list_drafts() instead.

Parameters
  • start – The index to start.

  • stop – The index to end.

Yields

The dict containing title and number of drafts.

list_drafts(**kwargs: int)tensorbay.client.requests.PagingList[tensorbay.client.struct.Draft][source]

List all the drafts.

Parameters

kwargs – For deprecated keyword arguments: “start” and “stop”.

Returns

The PagingList of drafts.

list_segment_names(**kwargs: int)tensorbay.client.requests.PagingList[str][source]

List all segment names in a certain commit.

Parameters

kwargs – For deprecated keyword arguments: “start” and “stop”.

Returns

The PagingList of segment names.

list_tags(**kwargs: int)tensorbay.client.requests.PagingList[tensorbay.client.struct.Tag][source]

List the information of tags.

Parameters

kwargs – For deprecated keyword arguments: “start” and “stop”.

Returns

The PagingList of tags.

update_notes(*, is_continuous: Optional[bool] = None, bin_point_cloud_fields: Optional[Iterable[str]] = Ellipsis)None[source]

Update the notes.

Parameters
  • is_continuous – Whether the data is continuous.

  • bin_point_cloud_fields – The field names of the bin point cloud files in the dataset.

upload_catalog(catalog: tensorbay.label.catalog.Catalog)None[source]

Upload a catalog to the draft.

Parameters

catalogCatalog to upload.

Raises

TypeError – When the catalog is empty.

class tensorbay.client.dataset.FusionDatasetClient(name: str, dataset_id: str, gas_client: GAS, *, commit_id: Optional[str] = None)[source]

Bases: tensorbay.client.dataset.DatasetClientBase

This class defines FusionDatasetClient.

FusionDatasetClient inherits from DatasetClientBase and provides more methods within a fusion dataset scope, such as FusionDatasetClient.get_segment(), FusionDatasetClient.commit and FusionDatasetClient.upload_segment(). In contrast to DatasetClient, a FusionDatasetClient has multiple sensors.

create_segment(name: str = '')tensorbay.client.segment.FusionSegmentClient[source]

Create a fusion segment with the given name.

Parameters

name – Segment name, can not be “_default”.

Returns

The created FusionSegmentClient with given name.

Raises

TypeError – When the segment exists.

get_or_create_segment(name: str = '')tensorbay.client.segment.FusionSegmentClient[source]

Get or create a fusion segment with the given name.

Parameters

name – Segment name, can not be “_default”.

Returns

The created FusionSegmentClient with given name.

get_segment(name: str = '')tensorbay.client.segment.FusionSegmentClient[source]

Get a fusion segment in a certain commit according to given name.

Parameters

name – The name of the required fusion segment.

Returns

~tensorbay.client.segment.FusionSegmentClient.

Return type

The required class

Raises

GASSegmentError – When the required fusion segment does not exist.

upload_segment(segment: tensorbay.dataset.segment.FusionSegment, *, jobs: int = 1, skip_uploaded_files: bool = False, quiet: bool = False)tensorbay.client.segment.FusionSegmentClient[source]

Upload a fusion segment object to the draft.

This function will upload all info contains in the input FusionSegment, which includes:

  • Create a segment using the name of input fusion segment object.

  • Upload all sensors in the segment to the dataset.

  • Upload all frames in the segment to the dataset.

Parameters
  • segment – The FusionSegment.

  • jobs – The number of the max workers in multi-thread upload.

  • skip_uploaded_files – Set it to True to skip the uploaded files.

  • quiet – Set to True to stop showing the upload process bar.

Returns

The FusionSegmentClient

used for uploading the data in the segment.

tensorbay.client.exceptions

Classes refer to TensorBay exceptions.

Error

Description

GASDatasetError

The requested dataset does not exist

GASSegmentError

The requested segment does not exist

GASPathError

Remote path does not follow linux style

GASDatasetTypeError and GASResponseError are deprecated since v1.3.0, and will be removed in v1.5.0.

Please use DatasetTypeError instead of GASDatasetTypeError. Please use ResponseError instead of GASResponseError.

exception tensorbay.client.exceptions.GASDatasetError(dataset_name: str)[source]

Bases: tensorbay.exception.ClientError

This error is raised to indicate that the requested dataset does not exist.

Parameters

dataset_name – The name of the missing dataset.

exception tensorbay.client.exceptions.GASPathError(remote_path: str)[source]

Bases: tensorbay.exception.ClientError

This error is raised to indicate that remote path does not follow linux style.

Parameters

remote_path – The invalid remote path.

exception tensorbay.client.exceptions.GASSegmentError(segment_name: str)[source]

Bases: tensorbay.exception.ClientError

This error is raised to indicate that the requested segment does not exist.

Parameters

segment_name – The name of the missing segment_name.

tensorbay.client.gas

Class GAS.

The GAS defines the initial client to interact between local and TensorBay. It provides some operations on datasets level such as GAS.create_dataset(), GAS.list_dataset_names() and GAS.get_dataset().

AccessKey is required when operating with dataset.

class tensorbay.client.gas.GAS(access_key: str, url: str = '')[source]

Bases: object

GAS defines the initial client to interact between local and TensorBay.

GAS provides some operations on dataset level such as GAS.create_dataset() GAS.list_dataset_names() and GAS.get_dataset().

Parameters
  • access_key – User’s access key.

  • url – The host URL of the gas website.

create_auth_dataset(name: str, config_name: str, path: str, is_fusion: bool = False)Union[tensorbay.client.dataset.DatasetClient, tensorbay.client.dataset.FusionDatasetClient][source]

Create a TensorBay dataset with given name in auth cloud storage.

The dataset will be linked to the given auth cloud storage

and all of relative data will be stored in auth cloud storage.

Parameters
  • name – Name of the dataset, unique for a user.

  • config_name – The auth storage config name.

  • path – The path of the dataset to create in auth cloud storage.

  • is_fusion – Whether the dataset is a fusion dataset, True for fusion dataset.

Returns

The created DatasetClient instance or FusionDatasetClient instance (is_fusion=True), and the status of dataset client is “commit”.

create_dataset(name: str, is_fusion: typing_extensions.Literal[False] = False, *, region: Optional[str] = 'None')tensorbay.client.dataset.DatasetClient[source]
create_dataset(name: str, is_fusion: typing_extensions.Literal[True], *, region: Optional[str] = 'None')tensorbay.client.dataset.FusionDatasetClient
create_dataset(name: str, is_fusion: bool = False, *, region: Optional[str] = 'None')Union[tensorbay.client.dataset.DatasetClient, tensorbay.client.dataset.FusionDatasetClient]

Create a TensorBay dataset with given name.

Parameters
  • name – Name of the dataset, unique for a user.

  • is_fusion – Whether the dataset is a fusion dataset, True for fusion dataset.

  • region – Region of the dataset to be stored, only support “beijing”, “hangzhou”, “shanghai”, default is “shanghai”.

Returns

The created DatasetClient instance or FusionDatasetClient instance (is_fusion=True), and the status of dataset client is “commit”.

delete_dataset(name: str)None[source]

Delete a TensorBay dataset with given name.

Parameters

name – Name of the dataset, unique for a user.

get_auth_storage_config(name: str)Dict[str, Any][source]

Get the auth storage config with the given name.

Parameters

name – The required auth storage config name.

Returns

The auth storage config with the given name.

Raises

TypeError – When the required auth storage config does not exist or the given auth storage config is illegal.

get_dataset(name: str, is_fusion: typing_extensions.Literal[False] = False)tensorbay.client.dataset.DatasetClient[source]
get_dataset(name: str, is_fusion: typing_extensions.Literal[True])tensorbay.client.dataset.FusionDatasetClient
get_dataset(name: str, is_fusion: bool = False)Union[tensorbay.client.dataset.DatasetClient, tensorbay.client.dataset.FusionDatasetClient]

Get a TensorBay dataset with given name and commit ID.

Parameters
  • name – The name of the requested dataset.

  • is_fusion – Whether the dataset is a fusion dataset, True for fusion dataset.

Returns

The requested DatasetClient instance or FusionDatasetClient instance (is_fusion=True), and the status of dataset client is “commit”.

Raises

DatasetTypeError – When the requested dataset type is not the same as given.

list_auth_storage_configs()tensorbay.client.requests.PagingList[Dict[str, Any]][source]

List auth storage configs.

Returns

The PagingList of all auth storage configs.

list_dataset_names(**kwargs: int)tensorbay.client.requests.PagingList[str][source]

List names of all TensorBay datasets.

Parameters

kwargs – For deprecated keyword arguments: “start” and “stop”.

Returns

The PagingList of all TensorBay dataset names.

rename_dataset(name: str, new_name: str)None[source]

Rename a TensorBay Dataset with given name.

Parameters
  • name – Name of the dataset, unique for a user.

  • new_name – New name of the dataset, unique for a user.

upload_dataset(dataset: tensorbay.dataset.dataset.Dataset, draft_number: Optional[int] = None, *, jobs: int = '1', skip_uploaded_files: bool = 'False', quiet: bool = 'False')tensorbay.client.dataset.DatasetClient[source]
upload_dataset(dataset: tensorbay.dataset.dataset.FusionDataset, draft_number: Optional[int] = None, *, jobs: int = '1', skip_uploaded_files: bool = 'False', quiet: bool = 'False')tensorbay.client.dataset.FusionDatasetClient
upload_dataset(dataset: Union[tensorbay.dataset.dataset.Dataset, tensorbay.dataset.dataset.FusionDataset], draft_number: Optional[int] = None, *, jobs: int = '1', skip_uploaded_files: bool = 'False', quiet: bool = 'False')Union[tensorbay.client.dataset.DatasetClient, tensorbay.client.dataset.FusionDatasetClient]

Upload a local dataset to TensorBay.

This function will upload all information contains in the Dataset or FusionDataset, which includes:

  • Create a TensorBay dataset with the name and type of input local dataset.

  • Upload all Segment or FusionSegment in the dataset to TensorBay.

Parameters
  • dataset – The Dataset or FusionDataset needs to be uploaded.

  • jobs – The number of the max workers in multi-thread upload.

  • skip_uploaded_files – Set it to True to skip the uploaded files.

  • draft_number – The draft number.

  • quiet – Set to True to stop showing the upload process bar.

Returns

The DatasetClient or FusionDatasetClient bound with the uploaded dataset.

tensorbay.client.log

Logging utility functions.

Dump_request_and_response dumps http request and response.

class tensorbay.client.log.RequestLogging(request: requests.models.PreparedRequest)[source]

Bases: object

This class used to lazy load request to logging.

Parameters

request – The request of the request.

class tensorbay.client.log.ResponseLogging(response: requests.models.Response)[source]

Bases: object

This class used to lazy load response to logging.

Parameters

response – The response of the request.

tensorbay.client.log.dump_request_and_response(response: requests.models.Response)str[source]

Dumps http request and response.

Parameters

response – Http response and response.

Returns

Http request and response for logging, sample:

===================================================================
########################## HTTP Request ###########################
"url": https://gas.graviti.cn/gatewayv2/content-store/putObject
"method": POST
"headers": {
  "User-Agent": "python-requests/2.23.0",
  "Accept-Encoding": "gzip, deflate",
  "Accept": "*/*",
  "Connection": "keep-alive",
  "X-Token": "c3b1808b21024eb38f066809431e5bb9",
  "Content-Type": "multipart/form-data; boundary=5adff1fc0524465593d6a9ad68aad7f9",
  "Content-Length": "330001"
}
"body":
--5adff1fc0524465593d6a9ad68aad7f9
b'Content-Disposition: form-data; name="contentSetId"\r\n\r\n'
b'e6110ff1-9e7c-4c98-aaf9-5e35522969b9'

--5adff1fc0524465593d6a9ad68aad7f9
b'Content-Disposition: form-data; name="filePath"\r\n\r\n'
b'4.jpg'

--5adff1fc0524465593d6a9ad68aad7f9
b'Content-Disposition: form-data; name="fileData"; filename="4.jpg"\r\n\r\n'
[329633 bytes of object data]

--5adff1fc0524465593d6a9ad68aad7f9--

########################## HTTP Response ###########
"url": https://gas.graviti.cn/gatewayv2/content-stor
"status_code": 200
"reason": OK
"headers": {
  "Date": "Sat, 23 May 2020 13:05:09 GMT",
  "Content-Type": "application/json;charset=utf-8",
  "Content-Length": "69",
  "Connection": "keep-alive",
  "Access-Control-Allow-Origin": "*",
  "X-Kong-Upstream-Latency": "180",
  "X-Kong-Proxy-Latency": "112",
  "Via": "kong/2.0.4"
}
"content": {
  "success": true,
  "code": "DATACENTER-0",
  "message": "success",
  "data": {}
}
====================================================

tensorbay.client.requests

Class Client and method multithread_upload.

Client can send POST, PUT, and GET requests to the TensorBay Dataset Open API.

multithread_upload() creates a multi-thread framework for uploading.

class tensorbay.client.requests.Client(access_key: str, url: str = '')[source]

Bases: object

This class defines Client.

Client defines the client that saves the user and URL information and supplies basic call methods that will be used by derived clients, such as sending GET, PUT and POST requests to TensorBay Open API.

Parameters
  • access_key – User’s access key.

  • url – The URL of the graviti gas website.

do(method: str, url: str, **kwargs: Any)requests.models.Response[source]

Send a request.

Parameters
  • method – The method of the request.

  • url – The URL of the request.

  • **kwargs – Extra keyword arguments to send in the GET request.

Returns

Response of the request.

open_api_do(method: str, section: str, dataset_id: str = '', **kwargs: Any)requests.models.Response[source]

Send a request to the TensorBay Open API.

Parameters
  • method – The method of the request.

  • section – The section of the request.

  • dataset_id – Dataset ID.

  • **kwargs – Extra keyword arguments to send in the POST request.

Returns

Response of the request.

property session: tensorbay.client.requests.UserSession

Create and return a session per PID so each sub-processes will use their own session.

Returns

The session corresponding to the process.

class tensorbay.client.requests.Config[source]

Bases: object

This is a base class defining the concept of Request Config.

max_retries

Maximum retry times of the request.

allowed_retry_methods

The allowed methods for retrying request.

allowed_retry_status

The allowed status for retrying request. If both methods and status are fitted, the retrying strategy will work.

timeout

Timeout value of the request in seconds.

is_internal

Whether the request is from internal.

class tensorbay.client.requests.PagingList(func: Callable[[int, int], Generator[tensorbay.client.requests._T, None, int]], limit: int, slicing: slice = slice(0, None, None))[source]

Bases: Sequence[tensorbay.client.requests._T], tensorbay.utility.repr.ReprMixin

PagingList is a wrap of web paging request.

It follows the python Sequence protocal, which means it can be used like a python builtin list. And it provides features like lazy evaluation and cache.

Parameters
  • func – A paging generator function, which inputs offset<int> and limit<int> and returns a generator. The returned generator should yield the element user needs, and return the total count of the elements in the paging request.

  • limit – The page size of each paging request.

  • slicing – The required slice of PagingList.

class tensorbay.client.requests.TimeoutHTTPAdapter(*args: Any, timeout: Optional[int] = None, **kwargs: Any)[source]

Bases: requests.adapters.HTTPAdapter

This class defines the http adapter for setting the timeout value.

Parameters
  • *args – Extra arguments to initialize TimeoutHTTPAdapter.

  • timeout – Timeout value of the post request in seconds.

  • **kwargs – Extra keyword arguments to initialize TimeoutHTTPAdapter.

send(request: requests.models.PreparedRequest, stream: Any = False, timeout: Optional[Any] = None, verify: Any = True, cert: Optional[Any] = None, proxies: Optional[Any] = None)Any[source]

Send the request.

Parameters
  • request – The PreparedRequest being sent.

  • stream – Whether to stream the request content.

  • timeout – Timeout value of the post request in seconds.

  • verify – A path string to a CA bundle to use or a boolean which controls whether to verify the server’s TLS certificate.

  • cert – User-provided SSL certificate.

  • proxies – Proxies dict applying to the request.

Returns

Response object.

class tensorbay.client.requests.Tqdm(*_, **__)[source]

Bases: tqdm.std.tqdm

A wrapper class of tqdm for showing the process bar.

Parameters
  • total – The number of excepted iterations.

  • disable – Whether to disable the entire progress bar.

update_callback(_: Any)None[source]

Callback function for updating process bar when multithread task is done.

update_for_skip(condition: bool)bool[source]

Update process bar for the items which are skipped in builtin filter function.

Parameters

condition – The filter condition, the process bar will be updated if condition is False.

Returns

The input condition.

class tensorbay.client.requests.UserSession[source]

Bases: requests.sessions.Session

This class defines UserSession.

request(method: str, url: str, *args: Any, **kwargs: Any)requests.models.Response[source]

Make the request.

Parameters
  • method – Method for the request.

  • url – URL for the request.

  • *args – Extra arguments to make the request.

  • **kwargs – Extra keyword arguments to make the request.

Returns

Response of the request.

Raises

ResponseError – If post response error.

tensorbay.client.requests.multithread_upload(function: Callable[[tensorbay.client.requests._T], None], arguments: Iterable[tensorbay.client.requests._T], *, jobs: int = 1, pbar: tensorbay.client.requests.Tqdm)None[source]

Multi-thread upload framework.

Parameters
  • function – The upload function.

  • arguments – The arguments of the upload function.

  • jobs – The number of the max workers in multi-thread uploading procession.

  • pbar – The Tqdm instance for showing the upload process bar.

tensorbay.client.segment

SegmentClientBase, SegmentClient and FusionSegmentClient.

The SegmentClient is a remote concept. It contains the information needed for determining a unique segment in a dataset on TensorBay, and provides a series of methods within a segment scope, such as SegmentClient.upload_label(), SegmentClient.upload_data(), SegmentClient.list_data() and so on. In contrast to the SegmentClient, Segment is a local concept. It represents a segment created locally. Please refer to Segment for more information.

Similarly to the SegmentClient, the FusionSegmentClient represents the fusion segment in a fusion dataset on TensorBay, and its local counterpart is FusionSegment. Please refer to FusionSegment for more information.

class tensorbay.client.segment.FusionSegmentClient(name: str, data_client: FusionDatasetClient)[source]

Bases: tensorbay.client.segment.SegmentClientBase

This class defines FusionSegmentClient.

FusionSegmentClient inherits from SegmentClientBase and provides methods within a fusion segment scope, such as FusionSegmentClient.upload_sensor(), FusionSegmentClient.upload_frame() and FusionSegmentClient.list_frames().

In contrast to SegmentClient, FusionSegmentClient has multiple sensors.

delete_sensor(sensor_name: str)None[source]

Delete a TensorBay sensor of the draft with the given sensor name.

Parameters

sensor_name – The TensorBay sensor to delete.

get_sensors()tensorbay.sensor.sensor.Sensors[source]

Return the sensors in a fusion segment client.

Returns

The sensors in the fusion segment client.

list_frames(**kwargs: int)tensorbay.client.requests.PagingList[tensorbay.dataset.frame.Frame][source]

List required frames in the segment in a certain commit.

Parameters

kwargs – For deprecated keyword arguments: “start” and “stop”.

Returns

The PagingList of Frame.

upload_frame(frame: tensorbay.dataset.frame.Frame, timestamp: Optional[float] = None)None[source]

Upload frame to the draft.

Parameters
  • frame – The Frame to upload.

  • timestamp – The mark to sort frames, supporting timestamp and float.

Raises
upload_sensor(sensor: tensorbay.sensor.sensor.Sensor)None[source]

Upload sensor to the draft.

Parameters

sensor – The sensor to upload.

class tensorbay.client.segment.SegmentClient(name: str, data_client: DatasetClient)[source]

Bases: tensorbay.client.segment.SegmentClientBase

This class defines SegmentClient.

SegmentClient inherits from SegmentClientBase and provides methods within a segment scope, such as upload_label(), upload_data(), list_data() and so on. In contrast to FusionSegmentClient, SegmentClient has only one sensor.

list_data(**kwargs: int)tensorbay.client.requests.PagingList[tensorbay.dataset.data.RemoteData][source]

List required Data object in a dataset segment.

Parameters

kwargs – For deprecated keyword arguments: “start” and “stop”.

Returns

The PagingList of RemoteData.

list_data_paths(**kwargs: int)tensorbay.client.requests.PagingList[str][source]

List required data path in a segment in a certain commit.

Parameters

kwargs – For deprecated keyword arguments: “start” and “stop”.

Returns

The PagingList of data paths.

upload_data(data: tensorbay.dataset.data.Data)None[source]

Upload Data object to the draft.

Parameters

data – The Data.

upload_file(local_path: str, target_remote_path: str = '')None[source]

Upload data with local path to the draft.

Parameters
  • local_path – The local path of the data to upload.

  • target_remote_path – The path to save the data in segment client.

Raises
upload_label(data: tensorbay.dataset.data.Data)None[source]

Upload label with Data object to the draft.

Parameters

data – The data object which represents the local file to upload.

class tensorbay.client.segment.SegmentClientBase(name: str, dataset_client: Union[DatasetClient, FusionDatasetClient])[source]

Bases: object

This class defines the basic concept of SegmentClient.

A SegmentClientBase contains the information needed for determining

a unique segment in a dataset on TensorBay.

Parameters
  • name – Segment name.

  • dataset_client – The dataset client.

name

Segment name.

status

The status of the dataset client.

delete_data(remote_paths: Union[str, Iterable[str]])None[source]

Delete data of a segment in a certain commit with the given remote paths.

Parameters

remote_paths – The remote paths of data in a segment.

tensorbay.client.struct

User, Commit, Tag, Branch and Draft classes.

User defines the basic concept of a user with an action.

Commit defines the structure of a commit.

Tag defines the structure of a commit tag.

Branch defines the structure of a branch.

Draft defines the structure of a draft.

class tensorbay.client.struct.Branch(name: str, commit_id: str, parent_commit_id: Optional[str], message: str, committer: tensorbay.client.struct.User)[source]

Bases: tensorbay.client.struct._NamedCommit

This class defines the structure of a branch.

Parameters
  • name – The name of the branch.

  • commit_id – The commit id.

  • parent_commit_id – The parent commit id.

  • message – The commit message.

  • committer – The commit user.

class tensorbay.client.struct.Commit(commit_id: str, parent_commit_id: Optional[str], message: str, committer: tensorbay.client.struct.User)[source]

Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the structure of a commit.

Parameters
  • commit_id – The commit id.

  • parent_commit_id – The parent commit id.

  • message – The commit message.

  • committer – The commit user.

dumps()Dict[str, Any][source]

Dumps all the commit information into a dict.

Returns

A dict containing all the information of the commit:

{
    "commitId": <str>
    "parentCommitId": <str> or None
    "message": <str>
    "committer": {
        "name": <str>
        "date": <int>
    }
}

classmethod loads(contents: Dict[str, Any])tensorbay.client.struct._T[source]

Loads a Commit instance for the given contents.

Parameters

contents

A dict containing all the information of the commit:

{
    "commitId": <str>
    "parentCommitId": <str> or None
    "message": <str>
    "committer": {
        "name": <str>
        "date": <int>
    }
}

Returns

A Commit instance containing all the information in the given contents.

class tensorbay.client.struct.Draft(number: int, title: str)[source]

Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the basic structure of a draft.

Parameters
  • number – The number of the draft.

  • title – The title of the draft.

dumps()Dict[str, Any][source]

Dumps all the information of the draft into a dict.

Returns

A dict containing all the information of the draft:

{
    "number": <int>
    "title": <str>
}

classmethod loads(contents: Dict[str, Any])tensorbay.client.struct._T[source]

Loads a Draft instance from the given contents.

Parameters

contents

A dict containing all the information of the draft:

{
    "number": <int>
    "title": <str>
}

Returns

A Draft instance containing all the information in the given contents.

class tensorbay.client.struct.Tag(name: str, commit_id: str, parent_commit_id: Optional[str], message: str, committer: tensorbay.client.struct.User)[source]

Bases: tensorbay.client.struct._NamedCommit

This class defines the structure of the tag of a commit.

Parameters
  • name – The name of the tag.

  • commit_id – The commit id.

  • parent_commit_id – The parent commit id.

  • message – The commit message.

  • committer – The commit user.

class tensorbay.client.struct.User(name: str, date: int)[source]

Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the basic concept of a user with an action.

Parameters
  • name – The name of the user.

  • date – The date of the user action.

dumps()Dict[str, Any][source]

Dumps all the user information into a dict.

Returns

A dict containing all the information of the user:

{
    "name": <str>
    "date": <int>
}

classmethod loads(contents: Dict[str, Any])tensorbay.client.struct._T[source]

Loads a User instance from the given contents.

Parameters

contents

A dict containing all the information of the commit:

{
    "name": <str>
    "date": <int>
}

Returns

A User instance containing all the information in the given contents.

tensorbay.dataset

tensorbay.dataset.data

Data.

Data is the most basic data unit of a Dataset. It contains path information of a data sample and its corresponding labels.

class tensorbay.dataset.data.Data(local_path: str, *, target_remote_path: Optional[str] = None, timestamp: Optional[float] = None)[source]

Bases: tensorbay.dataset.data.DataBase

Data is a combination of a specific local file and its label.

It contains the file local path, label information of the file and the file metadata, such as timestamp.

A Data instance contains one or several types of labels.

Parameters
  • local_path – The file local path.

  • target_remote_path – The file remote path after uploading to tensorbay.

  • timestamp – The timestamp for the file.

path

The file local path.

timestamp

The timestamp for the file.

labels

The Labels that contains all the label information of the file.

target_remote_path

The target remote path of the data.

dumps()Dict[str, Any][source]

Dumps the local data into a dict.

Returns

Dumped data dict, which looks like:

{
    "localPath": <str>,
    "timestamp": <float>,
    "label": {
        "CLASSIFICATION": {...},
        "BOX2D": {...},
        "BOX3D": {...},
        "POLYGON2D": {...},
        "POLYLINE2D": {...},
        "KEYPOINTS2D": {...},
        "SENTENCE": {...}
    }
}

classmethod loads(contents: Dict[str, Any])tensorbay.dataset.data._T[source]

Loads Data from a dict containing local data information.

Parameters

contents

A dict containing the information of the data, which looks like:

{
    "localPath": <str>,
    "timestamp": <float>,
    "label": {
        "CLASSIFICATION": {...},
        "BOX2D": {...},
        "BOX3D": {...},
        "POLYGON2D": {...},
        "POLYLINE2D": {...},
        "KEYPOINTS2D": {...},
        "SENTENCE": {...}
    }
}

Returns

A Data instance containing information from the given dict.

open()_io.BufferedReader[source]

Return the binary file pointer of this file.

The local file pointer will be obtained by build-in open().

Returns

The local file pointer for this data.

class tensorbay.dataset.data.DataBase(path: str, *, timestamp: Optional[float] = None)[source]

Bases: tensorbay.utility.repr.ReprMixin

DataBase is a base class for the file and label combination.

Parameters
  • path – The file path.

  • timestamp – The timestamp for the file.

path

The file path.

timestamp

The timestamp for the file.

labels

The Labels that contains all the label information of the file.

static loads(contents: Dict[str, Any])_Type[source]

Loads Data or RemoteData from a dict containing data information.

Parameters

contents

A dict containing the information of the data, which looks like:

{
    "localPath" or "remotePath": <str>,
    "timestamp": <float>,
    "label": {
        "CLASSIFICATION": {...},
        "BOX2D": {...},
        "BOX3D": {...},
        "POLYGON2D": {...},
        "POLYLINE2D": {...},
        "KEYPOINTS2D": {...},
        "SENTENCE": {...}
    }
}

Returns

A Data or RemoteData instance containing the given dict information.

class tensorbay.dataset.data.RemoteData(remote_path: str, *, timestamp: Optional[float] = None, url_getter: Optional[Callable[[str], str]] = None)[source]

Bases: tensorbay.dataset.data.DataBase

RemoteData is a combination of a specific tensorbay dataset file and its label.

It contains the file remote path, label information of the file and the file metadata, such as timestamp.

A RemoteData instance contains one or several types of labels.

Parameters
  • remote_path – The file remote path.

  • timestamp – The timestamp for the file.

  • url_getter – The url getter of the remote file.

path

The file remote path.

timestamp

The timestamp for the file.

labels

The Labels that contains all the label information of the file.

dumps()Dict[str, Any][source]

Dumps the remote data into a dict.

Returns

Dumped data dict, which looks like:

{
    "remotePath": <str>,
    "timestamp": <float>,
    "label": {
        "CLASSIFICATION": {...},
        "BOX2D": {...},
        "BOX3D": {...},
        "POLYGON2D": {...},
        "POLYLINE2D": {...},
        "KEYPOINTS2D": {...},
        "SENTENCE": {...}
    }
}

get_url()str[source]

Return the url of the data hosted by tensorbay.

Returns

The url of the data.

Raises

ValueError – When the url_getter is missing.

classmethod loads(contents: Dict[str, Any])tensorbay.dataset.data._T[source]

Loads RemoteData from a dict containing remote data information.

Parameters

contents

A dict containing the information of the data, which looks like:

{
    "remotePath": <str>,
    "timestamp": <float>,
    "label": {
        "CLASSIFICATION": {...},
        "BOX2D": {...},
        "BOX3D": {...},
        "POLYGON2D": {...},
        "POLYLINE2D": {...},
        "KEYPOINTS2D": {...},
        "SENTENCE": {...}
    }
}

Returns

A Data instance containing information from the given dict.

open()http.client.HTTPResponse[source]

Return the binary file pointer of this file.

The remote file pointer will be obtained by urllib.request.urlopen().

Returns

The remote file pointer for this data.

tensorbay.dataset.dataset

Notes, DatasetBase, Dataset and FusionDataset.

Notes contains the basic information of a DatasetBase.

DatasetBase defines the basic concept of a dataset, which is the top-level structure to handle your data files, labels and other additional information.

It represents a whole dataset contains several segments and is the base class of Dataset and FusionDataset.

Dataset is made up of data collected from only one sensor or data without sensor information. It consists of a list of Segment.

FusionDataset is made up of data collected from multiple sensors. It consists of a list of FusionSegment.

class tensorbay.dataset.dataset.Dataset(name: str)[source]

Bases: tensorbay.dataset.dataset.DatasetBase[tensorbay.dataset.segment.Segment]

This class defines the concept of dataset.

Dataset is made up of data collected from only one sensor or data without sensor information. It consists of a list of Segment.

create_segment(segment_name: str = '')tensorbay.dataset.segment.Segment[source]

Create a segment with the given name.

Parameters

segment_name – The name of the segment to create, which default value is an empty string.

Returns

The created Segment.

class tensorbay.dataset.dataset.DatasetBase(name: str)[source]

Bases: tensorbay.utility.name.NameMixin, Sequence[tensorbay.dataset.dataset._T]

This class defines the concept of a basic dataset.

DatasetBase represents a whole dataset contains several segments and is the base class of Dataset and FusionDataset.

A dataset with labels should contain a Catalog indicating all the possible values of the labels.

Parameters

name – The name of the dataset.

catalog

The Catalog of the dataset.

notes

The Notes of the dataset.

add_segment(segment: tensorbay.dataset.dataset._T)None[source]

Add a segment to the dataset.

Parameters

segment – The segment to be added.

get_segment_by_name(name: str)tensorbay.dataset.dataset._T[source]

Return the segment corresponding to the given name.

Parameters

name – The name of the request segment.

Returns

The segment which matches the input name.

load_catalog(filepath: str)None[source]

Load catalog from a json file.

Parameters

filepath – The path of the json file which contains the catalog information.

class tensorbay.dataset.dataset.FusionDataset(name: str)[source]

Bases: tensorbay.dataset.dataset.DatasetBase[tensorbay.dataset.segment.FusionSegment]

This class defines the concept of fusion dataset.

FusionDataset is made up of data collected from multiple sensors. It consists of a list of FusionSegment.

create_segment(segment_name: str = '')tensorbay.dataset.segment.FusionSegment[source]

Create a fusion segment with the given name.

Parameters

segment_name – The name of the fusion segment to create, which default value is an empty string.

Returns

The created FusionSegment.

class tensorbay.dataset.dataset.Notes(is_continuous: bool = False, bin_point_cloud_fields: Optional[Iterable[str]] = None)[source]

Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This is a class stores the basic information of DatasetBase.

Parameters
  • is_continuous – Whether the data inside the dataset is time-continuous.

  • bin_point_cloud_fields – The field names of the bin point cloud files in the dataset.

dumps()Dict[str, Any][source]

Dumps the notes into a dict.

Returns

A dict containing all the information of the Notes:

{
    "isContinuous":           <boolean>
    "binPointCloudFields": [  <array> or null
        <field_name>,         <str>
        ...
    ]
}

keys()KeysView[str][source]

Return the valid keys within the notes.

Returns

The valid keys within the notes.

classmethod loads(contents: Dict[str, Any])tensorbay.dataset.dataset._T[source]

Loads a Notes instance from the given contents.

Parameters

contents

The given dict containing the dataset notes:

{
    "isContinuous":            <boolean>
    "binPointCloudFields": [   <array> or null
            <field_name>,      <str>
            ...
    ]
}

Returns

The loaded Notes instance.

tensorbay.dataset.segment

Segment and FusionSegment.

Segment is a concept in Dataset. It is the structure that composes Dataset, and consists of a series of Data without sensor information.

Fusion segment is a concept in FusionDataset. It is the structure that composes FusionDataset, and consists of a list of Frame along with multiple Sensors.

class tensorbay.dataset.segment.FusionSegment(name: str = '', client: Optional[FusionDatasetClient] = None)[source]

Bases: tensorbay.utility.name.NameMixin, tensorbay.utility.user.UserMutableSequence[tensorbay.dataset.frame.Frame]

This class defines the concept of fusion segment.

Fusion segment is a concept in FusionDataset. It is the structure that composes FusionDataset, and consists of a list of Frame.

Besides, a fusion segment contains multiple Sensors correspoinding to the Data under each Frame.

If the segment is inside of a time-continuous FusionDataset, the time continuity of the frames should be indicated by the index inside the fusion segment.

Since FusionSegment extends UserMutableSequence, its basic operations are the same as a list’s.

To initialize a FusionSegment and add a Frame to it:

fusion_segment = FusionSegment(fusion_segment_name)
frame = Frame()
...
fusion_segment.append(frame)
Parameters
  • name – The name of the fusion segment, whose default value is an empty string.

  • client – The FusionDatasetClient if you want to read the segment from tensorbay.

class tensorbay.dataset.segment.Segment(name: str = '', client: Optional[DatasetClient] = None)[source]

Bases: tensorbay.utility.name.NameMixin, tensorbay.utility.user.UserMutableSequence[DataBase._Type]

This class defines the concept of segment.

Segment is a concept in Dataset. It is the structure that composes Dataset, and consists of a series of Data without sensor information.

If the segment is inside of a time-continuous Dataset, the time continuity of the data should be indicated by :meth`~graviti.dataset.data.Data.remote_path`.

Since Segment extends UserMutableSequence, its basic operations are the same as a list’s.

To initialize a Segment and add a Data to it:

segment = Segment(segment_name)
segment.append(Data())
Parameters
  • name – The name of the segment, whose default value is an empty string.

  • client – The DatasetClient if you want to read the segment from tensorbay.

sort(*, key: Callable[[Union[Data, RemoteData]], Any] = <function Segment.<lambda>>, reverse: bool = False)None[source]

Sort the list in ascending order and return None.

The sort is in-place (i.e. the list itself is modified) and stable (i.e. the order of two equal elements is maintained).

Parameters
  • key – If a key function is given, apply it once to each item of the segment, and sort them according to their function values in ascending or descending order. By default, the data within the segment is sorted by fileuri.

  • reverse – The reverse flag can be set as True to sort in descending order.

tensorbay.dataset.frame

Frame.

Frame is a concept in FusionDataset.

It is the structure that composes a FusionSegment, and consists of multiple Data collected at the same time from different sensors.

class tensorbay.dataset.frame.Frame(frame_id: Optional[ulid.ulid.ULID] = None)[source]

Bases: tensorbay.utility.user.UserMutableMapping[str, DataBase._Type]

This class defines the concept of frame.

Frame is a concept in FusionDataset.

It is the structure that composes FusionSegment, and consists of multiple Data collected at the same time corresponding to different sensors.

Since Frame extends UserMutableMapping, its basic operations are the same as a dictionary’s.

To initialize a Frame and add a Data to it:

frame = Frame()
frame[sensor_name] = Data()
dumps()Dict[str, Any][source]

Dumps the current frame into a dict.

Returns

A dict containing all the information of the frame.

classmethod loads(contents: Dict[str, Any])tensorbay.dataset.frame._T[source]

Loads a Frame object from a dict containing the frame information.

Parameters

contents

A dict containing the information of a frame, whose format should be like:

{
    "frameId": <str>,
    "frame": [
        {
            "sensorName": <str>,
            "remotePath" or "localPath": <str>,
            "timestamp": <float>,
            "label": {...}
        },
        ...
        ...
    ]
}

Returns

The loaded Frame object.

tensorbay.geometry

tensorbay.geometry.box

Box2D, Box3D.

Box2D contains the information of a 2D bounding box, such as the coordinates, width and height. It provides Box2D.iou() to calculate the intersection over union of two 2D boxes.

Box3D contains the information of a 3D bounding box such as the transform, translation, rotation and size. It provides Box3D.iou() to calculate the intersection over union of two 3D boxes.

class tensorbay.geometry.box.Box2D(xmin: float, ymin: float, xmax: float, ymax: float)[source]

Bases: tensorbay.utility.user.UserSequence[float]

This class defines the concept of Box2D.

Box2D contains the information of a 2D bounding box, such as the coordinates, width and height. It provides Box2D.iou() to calculate the intersection over union of two 2D boxes.

Parameters
  • xmin – The x coordinate of the top-left vertex of the 2D box.

  • ymin – The y coordinate of the top-left vertex of the 2D box.

  • xmax – The x coordinate of the bottom-right vertex of the 2D box.

  • ymax – The y coordinate of the bottom-right vertex of the 2D box.

Examples

>>> Box2D(1, 2, 3, 4)
Box2D(1, 2, 3, 4)
area()float[source]

Return the area of the 2D box.

Returns

The area of the 2D box.

Examples

>>> box2d = Box2D(1, 2, 3, 4)
>>> box2d.area()
4
property br: tensorbay.geometry.vector.Vector2D

Return the bottom right point.

Returns

The bottom right point.

Examples

>>> box2d = Box2D(1, 2, 3, 4)
>>> box2d.br
Vector2D(3, 4)
dumps()Dict[str, float][source]

Dumps a 2D box into a dict.

Returns

A dict containing vertex coordinates of the box.

Examples

>>> box2d = Box2D(1, 2, 3, 4)
>>> box2d.dumps()
{'xmin': 1, 'ymin': 2, 'xmax': 3, 'ymax': 4}
classmethod from_xywh(x: float, y: float, width: float, height: float)tensorbay.geometry.box._B2[source]

Create a Box2D instance from the top-left vertex and the width and the height.

Parameters
  • x – X coordinate of the top left vertex of the box.

  • y – Y coordinate of the top left vertex of the box.

  • width – Length of the box along the x axis.

  • height – Length of the box along the y axis.

Returns

The created Box2D instance.

Examples

>>> Box2D.from_xywh(1, 2, 3, 4)
Box2D(1, 2, 4, 6)
property height: float

Return the height of the 2D box.

Returns

The height of the 2D box.

Examples

>>> box2d = Box2D(1, 2, 3, 6)
>>> box2d.height
4
static iou(box1: tensorbay.geometry.box.Box2D, box2: tensorbay.geometry.box.Box2D)float[source]

Calculate the intersection over union of two 2D boxes.

Parameters
  • box1 – A 2D box.

  • box2 – A 2D box.

Returns

The intersection over union between the two input boxes.

Examples

>>> box2d_1 = Box2D(1, 2, 3, 4)
>>> box2d_2 = Box2D(2, 2, 3, 4)
>>> Box2D.iou(box2d_1, box2d_2)
0.5
classmethod loads(contents: Dict[str, float])tensorbay.geometry.box._B2[source]

Load a Box2D from a dict containing coordinates of the 2D box.

Parameters

contents – A dict containing coordinates of a 2D box.

Returns

The loaded Box2D object.

Examples

>>> contents = {"xmin": 1.0, "ymin": 2.0, "xmax": 3.0, "ymax": 4.0}
>>> Box2D.loads(contents)
Box2D(1.0, 2.0, 3.0, 4.0)
property tl: tensorbay.geometry.vector.Vector2D

Return the top left point.

Returns

The top left point.

Examples

>>> box2d = Box2D(1, 2, 3, 4)
>>> box2d.tl
Vector2D(1, 2)
property width: float

Return the width of the 2D box.

Returns

The width of the 2D box.

Examples

>>> box2d = Box2D(1, 2, 3, 6)
>>> box2d.width
2
property xmax: float

Return the maximum x coordinate.

Returns

Maximum x coordinate.

Examples

>>> box2d = Box2D(1, 2, 3, 4)
>>> box2d.xmax
3
property xmin: float

Return the minimum x coordinate.

Returns

Minimum x coordinate.

Examples

>>> box2d = Box2D(1, 2, 3, 4)
>>> box2d.xmin
1
property ymax: float

Return the maximum y coordinate.

Returns

Maximum y coordinate.

Examples

>>> box2d = Box2D(1, 2, 3, 4)
>>> box2d.ymax
4
property ymin: float

Return the minimum y coordinate.

Returns

Minimum y coordinate.

Examples

>>> box2d = Box2D(1, 2, 3, 4)
>>> box2d.ymin
2
class tensorbay.geometry.box.Box3D(size: Iterable[float], translation: Iterable[float] = (0, 0, 0), rotation: Union[Iterable[float], quaternion.quaternion] = (1, 0, 0, 0), *, transform_matrix: Optional[Union[Sequence[Sequence[float]], numpy.ndarray]] = None)[source]

Bases: tensorbay.utility.repr.ReprMixin

This class defines the concept of Box3D.

Box3D contains the information of a 3D bounding box such as the transform, translation, rotation and size. It provides Box3D.iou() to calculate the intersection over union of two 3D boxes.

Parameters
  • translation – Translation in a sequence of [x, y, z].

  • rotation – Rotation in a sequence of [w, x, y, z] or numpy quaternion.

  • size – Size in a sequence of [x, y, z].

  • transform_matrix – A 4x4 or 3x4 transform matrix.

Examples

Initialization Method 1: Init from size, translation and rotation.

>>> Box3D([1, 2, 3], [0, 1, 0, 0], [1, 2, 3])
Box3D(
  (size): Vector3D(1, 2, 3)
  (translation): Vector3D(1, 2, 3),
  (rotation): quaternion(0, 1, 0, 0),
)

Initialization Method 2: Init from size and transform matrix.

>>> from tensorbay.geometry import Transform3D
>>> matrix = [[1, 0, 0, 1], [0, 1, 0, 2], [0, 0, 1, 3]]
>>> Box3D(size=[1, 2, 3], transform_matrix=matrix)
Box3D(
  (size): Vector3D(1, 2, 3)
  (translation): Vector3D(1, 2, 3),
  (rotation): quaternion(1, -0, -0, -0),
)
dumps()Dict[str, Dict[str, float]][source]

Dumps the 3D box into a dict.

Returns

A dict containing translation, rotation and size information.

Examples

>>> box3d = Box3D(size=(1, 2, 3), translation=(1, 2, 3), rotation=(0, 1, 0, 0))
>>> box3d.dumps()
{
    "translation": {"x": 1, "y": 2, "z": 3},
    "rotation": {"w": 0.0, "x": 1.0, "y": 0.0, "z": 0.0},
    "size": {"x": 1, "y": 2, "z": 3},
}
classmethod iou(box1: tensorbay.geometry.box.Box3D, box2: tensorbay.geometry.box.Box3D, angle_threshold: float = 5)float[source]

Calculate the intersection over union between two 3D boxes.

Parameters
  • box1 – A 3D box.

  • box2 – A 3D box.

  • angle_threshold – The threshold of the relative angles between two input 3d boxes in degree.

Returns

The intersection over union of the two 3D boxes.

Examples

>>> box3d_1 = Box3D(size=[1, 1, 1])
>>> box3d_2 = Box3D(size=[2, 2, 2])
>>> Box3D.iou(box3d_1, box3d_2)
0.125
classmethod loads(contents: Dict[str, Dict[str, float]])tensorbay.geometry.box._B3[source]

Load a Box3D from a dict containing the coordinates of the 3D box.

Parameters

contents – A dict containing the coordinates of a 3D box.

Returns

The loaded Box3D object.

Examples

>>> contents = {
...     "size": {"x": 1.0, "y": 2.0, "z": 3.0},
...     "translation": {"x": 1.0, "y": 2.0, "z": 3.0},
...     "rotation": {"w": 0.0, "x": 1.0, "y": 0.0, "z": 0.0},
... }
>>> Box3D.loads(contents)
Box3D(
  (size): Vector3D(1.0, 2.0, 3.0)
  (translation): Vector3D(1.0, 2.0, 3.0),
  (rotation): quaternion(0, 1, 0, 0),
)
property rotation: quaternion.quaternion

Return the rotation of the 3D box.

Returns

The rotation of the 3D box.

Examples

>>> box3d = Box3D(size=(1, 1, 1), rotation=(0, 1, 0, 0))
>>> box3d.rotation
quaternion(0, 1, 0, 0)
property size: tensorbay.geometry.vector.Vector3D

Return the size of the 3D box.

Returns

The size of the 3D box.

Examples

>>> box3d = Box3D(size=(1, 1, 1))
>>> box3d.size
Vector3D(1, 1, 1)
property transform: tensorbay.geometry.transform.Transform3D

Return the transform of the 3D box.

Returns

The transform of the 3D box.

Examples

>>> box3d = Box3D(size=(1, 1, 1), translation=(1, 2, 3), rotation=(1, 0, 0, 0))
>>> box3d.transform
Transform3D(
  (translation): Vector3D(1, 2, 3),
  (rotation): quaternion(1, 0, 0, 0)
)
property translation: tensorbay.geometry.vector.Vector3D

Return the translation of the 3D box.

Returns

The translation of the 3D box.

Examples

>>> box3d = Box3D(size=(1, 1, 1), translation=(1, 2, 3))
>>> box3d.translation
Vector3D(1, 2, 3)
volume()float[source]

Return the volume of the 3D box.

Returns

The volume of the 3D box.

Examples

>>> box3d = Box3D(size=(1, 2, 3))
>>> box3d.volume()
6

tensorbay.geometry.keypoint

Keypoints2D, Keypoint2D.

Keypoint2D contains the information of 2D keypoint, such as the coordinates and visible status(optional).

Keypoints2D contains a list of 2D keypoint and is based on PointList2D.

class tensorbay.geometry.keypoint.Keypoint2D(*args: float, **kwargs: float)[source]

Bases: tensorbay.utility.user.UserSequence[float]

This class defines the concept of Keypoint2D.

Keypoint2D contains the information of 2D keypoint, such as the coordinates and visible status(optional).

Parameters
  • x – The x coordinate of the 2D keypoint.

  • y – The y coordinate of the 2D keypoint.

  • v

    The visible status(optional) of the 2D keypoint.

    Visible status can be “BINARY” or “TERNARY”:

    Visual Status

    v = 0

    v = 1

    v = 2

    BINARY

    visible

    invisible

    TERNARY

    visible

    occluded

    invisible

Examples

Initialization Method 1: Init from coordinates of x, y.

>>> Keypoint2D(1.0, 2.0)
Keypoint2D(1.0, 2.0)

Initialization Method 2: Init from coordinates and visible status.

>>> Keypoint2D(1.0, 2.0, 0)
Keypoint2D(1.0, 2.0, 0)
dumps()Dict[str, float][source]

Dumps the Keypoint2D into a dict.

Returns

A dict containing coordinates and visible status(optional) of the 2D keypoint.

Examples

>>> keypoint = Keypoint2D(1.0, 2.0, 1)
>>> keypoint.dumps()
{'x': 1.0, 'y': 2.0, 'v': 1}
classmethod loads(contents: Dict[str, float])tensorbay.geometry.keypoint._T[source]

Load a Keypoint2D from a dict containing coordinates of a 2D keypoint.

Parameters

contents – A dict containing coordinates and visible status(optional) of a 2D keypoint.

Returns

The loaded Keypoint2D object.

Examples

>>> contents = {"x":1.0,"y":2.0,"v":1}
>>> Keypoint2D.loads(contents)
Keypoint2D(1.0, 2.0, 1)
property v: Optional[int]

Return the visible status of the 2D keypoint.

Returns

Visible status of the 2D keypoint.

Examples

>>> keypoint = Keypoint2D(3.0, 2.0, 1)
>>> keypoint.v
1
class tensorbay.geometry.keypoint.Keypoints2D(points: Optional[Iterable[Iterable[float]]] = None)[source]

Bases: tensorbay.geometry.polygon.PointList2D[tensorbay.geometry.keypoint.Keypoint2D]

This class defines the concept of Keypoints2D.

Keypoints2D contains a list of 2D keypoint and is based on PointList2D.

Examples

>>> Keypoints2D([[1, 2], [2, 3]])
Keypoints2D [
  Keypoint2D(1, 2),
  Keypoint2D(2, 3)
]
classmethod loads(contents: List[Dict[str, float]])tensorbay.geometry.keypoint._P[source]

Load a Keypoints2D from a list of dict.

Parameters

contents – A list of dictionaries containing 2D keypoint.

Returns

The loaded Keypoints2D object.

Examples

>>> contents = [{"x": 1.0, "y": 1.0, "v": 1}, {"x": 2.0, "y": 2.0, "v": 2}]
>>> Keypoints2D.loads(contents)
Keypoints2D [
  Keypoint2D(1.0, 1.0, 1),
  Keypoint2D(2.0, 2.0, 2)
]

tensorbay.geometry.polygon

PointList2D, Polygon2D.

PointList2D contains a list of 2D points.

Polygon contains the coordinates of the vertexes of the polygon and provides Polygon2D.area() to calculate the area of the polygon.

class tensorbay.geometry.polygon.PointList2D(points: Optional[Iterable[Iterable[float]]] = None)[source]

Bases: tensorbay.utility.user.UserMutableSequence[tensorbay.geometry.polygon._T]

This class defines the concept of PointList2D.

PointList2D contains a list of 2D points.

Parameters

points – A list of 2D points.

bounds()tensorbay.geometry.box.Box2D[source]

Calculate the bounds of point list.

Returns

The bounds of point list.

dumps()List[Dict[str, float]][source]

Dumps a PointList2D into a point list.

Returns

A list of dictionaries containing the coordinates of the vertexes of the polygon within the point list.

classmethod loads(contents: List[Dict[str, float]])tensorbay.geometry.polygon._P[source]

Load a PointList2D from a list of dictionaries.

Parameters

contents

A list of dictionaries containing the coordinates of the vertexes of the polygon:

[
    {
        "x": ...
        "y": ...
    },
    ...
]

Returns

The loaded PointList2D object.

class tensorbay.geometry.polygon.Polygon2D(points: Optional[Iterable[Iterable[float]]] = None)[source]

Bases: tensorbay.geometry.polygon.PointList2D[tensorbay.geometry.vector.Vector2D]

This class defines the concept of Polygon2D.

Polygon2D contains the coordinates of the vertexes of the polygon and provides Polygon2D.area() to calculate the area of the polygon.

Examples

>>> Polygon2D([[1, 2], [2, 3], [2, 2]])
Polygon2D [
  Vector2D(1, 2),
  Vector2D(2, 3),
  Vector2D(2, 2)
]
area()float[source]

Return the area of the polygon.

The area is positive if the rotating direction of the points is counterclockwise, and negative if clockwise.

Returns

The area of the polygon.

Examples

>>> polygon = Polygon2D([[1, 2], [2, 2], [2, 3]])
>>> polygon.area()
0.5
classmethod loads(contents: List[Dict[str, float]])tensorbay.geometry.polygon._P[source]

Load a Polygon2D from a list of dictionaries.

Parameters

contents – A list of dictionaries containing the coordinates of the vertexes of the polygon.

Returns

The loaded Polygon2D object.

Examples

>>> contents = [{"x": 1.0, "y": 1.0}, {"x": 2.0, "y": 2.0}, {"x": 2.0, "y": 3.0}]
>>> Polygon2D.loads(contents)
Polygon2D [
  Vector2D(1.0, 1.0),
  Vector2D(2.0, 2.0),
  Vector2D(2.0, 3.0)
]

tensorbay.geometry.polyline

Polyline2D.

Polyline2D contains the coordinates of the vertexes of the polyline and provides a series of methods to operate on polyline, such as Polyline2D.uniform_frechet_distance() and Polyline2D.similarity().

class tensorbay.geometry.polyline.Polyline2D(points: Optional[Iterable[Iterable[float]]] = None)[source]

Bases: tensorbay.geometry.polygon.PointList2D[tensorbay.geometry.vector.Vector2D]

This class defines the concept of Polyline2D.

Polyline2D contains the coordinates of the vertexes of the polyline and provides a series of methods to operate on polyline, such as Polyline2D.uniform_frechet_distance() and Polyline2D.similarity().

Examples

>>> Polyline2D([[1, 2], [2, 3]])
Polyline2D [
  Vector2D(1, 2),
  Vector2D(2, 3)
]
classmethod loads(contents: List[Dict[str, float]])tensorbay.geometry.polyline._P[source]

Load a Polyline2D from a list of dict.

Parameters

contents – A list of dict containing the coordinates of the vertexes of the polyline.

Returns

The loaded Polyline2D object.

Examples

>>> polyline = Polyline2D([[1, 1], [1, 2], [2, 2]])
>>> polyline.dumps()
[{'x': 1, 'y': 1}, {'x': 1, 'y': 2}, {'x': 2, 'y': 2}]
static similarity(polyline1: Sequence[Sequence[float]], polyline2: Sequence[Sequence[float]])float[source]

Calculate the similarity between two polylines, range from 0 to 1.

Parameters
  • polyline1 – The first polyline consists of multiple points.

  • polyline2 – The second polyline consisting of multiple points.

Returns

The similarity between the two polylines. The larger the value, the higher the similarity.

Examples

>>> polyline_1 = [[1, 1], [1, 2], [2, 2]]
>>> polyline_2 = [[4, 5], [2, 1], [3, 3]]
>>> Polyline2D.similarity(polyline_1, polyline_2)
0.2788897449072022
static uniform_frechet_distance(polyline1: Sequence[Sequence[float]], polyline2: Sequence[Sequence[float]])float[source]

Compute the maximum distance between two curves if walk on a constant speed on a curve.

Parameters
  • polyline1 – The first polyline consists of multiple points.

  • polyline2 – The second polyline consists of multiple points.

Returns

The computed distance between the two polylines.

Examples

>>> polyline_1 = [[1, 1], [1, 2], [2, 2]]
>>> polyline_2 = [[4, 5], [2, 1], [3, 3]]
>>> Polyline2D.uniform_frechet_distance(polyline_1, polyline_2)
3.605551275463989

tensorbay.geometry.transform

Transform3D.

Transform3D contains the rotation and translation of a 3D transform. Transform3D.translation is stored as Vector3D, and Transform3D.rotation is stored as numpy quaternion.

class tensorbay.geometry.transform.Transform3D(translation: Iterable[float] = (0, 0, 0), rotation: Union[Iterable[float], quaternion.quaternion] = (1, 0, 0, 0), *, matrix: Optional[Union[Sequence[Sequence[float]], numpy.ndarray]] = None)[source]

Bases: tensorbay.utility.repr.ReprMixin

This class defines the concept of Transform3D.

Transform3D contains rotation and translation of the 3D transform.

Parameters
  • translation – Translation in a sequence of [x, y, z].

  • rotation – Rotation in a sequence of [w, x, y, z] or numpy quaternion.

  • matrix – A 4x4 or 3x4 transform matrix.

Raises

ValueError – If the shape of the input matrix is not correct.

Examples

Initialization Method 1: Init from translation and rotation.

>>> Transform3D([1, 1, 1], [1, 0, 0, 0])
Transform3D(
  (translation): Vector3D(1, 1, 1),
  (rotation): quaternion(1, 0, 0, 0)
)

Initialization Method 2: Init from transform matrix in sequence.

>>> Transform3D(matrix=[[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]])
Transform3D(
  (translation): Vector3D(1, 1, 1),
  (rotation): quaternion(1, -0, -0, -0)
)

Initialization Method 3: Init from transform matrix in numpy array.

>>> import numpy as np
>>> Transform3D(matrix=np.array([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]]))
Transform3D(
  (translation): Vector3D(1, 1, 1),
  (rotation): quaternion(1, -0, -0, -0)
)
as_matrix()numpy.ndarray[source]

Return the transform as a 4x4 transform matrix.

Returns

A 4x4 numpy array represents the transform matrix.

Examples

>>> transform = Transform3D([1, 2, 3], [0, 1, 0, 0])
>>> transform.as_matrix()
array([[ 1.,  0.,  0.,  1.],
       [ 0., -1.,  0.,  2.],
       [ 0.,  0., -1.,  3.],
       [ 0.,  0.,  0.,  1.]])
dumps()Dict[str, Dict[str, float]][source]

Dumps the Transform3D into a dict.

Returns

A dict containing rotation and translation information of the Transform3D.

Examples

>>> transform = Transform3D(matrix=[[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]])
>>> transform.dumps()
{
    'translation': {'x': 1, 'y': 1, 'z': 1},
    'rotation': {'w': 1.0, 'x': -0.0, 'y': -0.0, 'z': -0.0},
}
inverse()tensorbay.geometry.transform._T[source]

Return the inverse of the transform.

Returns

A Transform3D object representing the inverse of this Transform3D.

Examples

>>> transform = Transform3D([1, 2, 3], [0, 1, 0, 0])
>>> transform.inverse()
Transform3D(
  (translation): Vector3D(-1.0, 2.0, 3.0),
  (rotation): quaternion(0, -1, -0, -0)
)
classmethod loads(contents: Dict[str, Dict[str, float]])tensorbay.geometry.transform._T[source]

Load a Transform3D from a dict containing rotation and translation.

Parameters

contents – A dict containing rotation and translation of a 3D transform.

Returns

The loaded Transform3D object.

Example

>>> contents = {
...     "translation": {"x": 1.0, "y": 2.0, "z": 3.0},
...     "rotation": {"w": 1.0, "x": 0.0, "y": 0.0, "z": 0.0},
... }
>>> Transform3D.loads(contents)
Transform3D(
  (translation): Vector3D(1.0, 2.0, 3.0),
  (rotation): quaternion(1, 0, 0, 0)
)
property rotation: quaternion.quaternion

Return the rotation of the 3D transform.

Returns

Rotation in numpy quaternion.

Examples

>>> transform = Transform3D(matrix=[[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]])
>>> transform.rotation
quaternion(1, -0, -0, -0)
set_rotation(rotation: Union[Iterable[float], quaternion.quaternion])None[source]

Set the rotation of the transform.

Parameters

rotation – Rotation in a sequence of [w, x, y, z] or numpy quaternion.

Examples

>>> transform = Transform3D([1, 1, 1], [1, 0, 0, 0])
>>> transform.set_rotation([0, 1, 0, 0])
>>> transform
Transform3D(
  (translation): Vector3D(1, 1, 1),
  (rotation): quaternion(0, 1, 0, 0)
)
set_translation(x: float, y: float, z: float)None[source]

Set the translation of the transform.

Parameters
  • x – The x coordinate of the translation.

  • y – The y coordinate of the translation.

  • z – The z coordinate of the translation.

Examples

>>> transform = Transform3D([1, 1, 1], [1, 0, 0, 0])
>>> transform.set_translation(3, 4, 5)
>>> transform
Transform3D(
  (translation): Vector3D(3, 4, 5),
  (rotation): quaternion(1, 0, 0, 0)
)
property translation: tensorbay.geometry.vector.Vector3D

Return the translation of the 3D transform.

Returns

Translation in Vector3D.

Examples

>>> transform = Transform3D(matrix=[[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]])
>>> transform.translation
Vector3D(1, 1, 1)

tensorbay.geometry.vector

Vector, Vector2D, Vector3D.

Vector is the base class of Vector2D and Vector3D. It contains the coordinates of a 2D vector or a 3D vector.

Vector2D contains the coordinates of a 2D vector, extending Vector.

Vector3D contains the coordinates of a 3D vector, extending Vector.

class tensorbay.geometry.vector.Vector(x: float, y: float, z: Optional[float] = None)[source]

Bases: tensorbay.utility.user.UserSequence[float]

This class defines the basic concept of Vector.

Vector contains the coordinates of a 2D vector or a 3D vector.

Parameters
  • x – The x coordinate of the vector.

  • y – The y coordinate of the vector.

  • z – The z coordinate of the vector.

Examples

>>> Vector(1, 2)
Vector2D(1, 2)
>>> Vector(1, 2, 3)
Vector3D(1, 2, 3)
static loads(contents: Dict[str, float])Union[tensorbay.geometry.vector.Vector2D, tensorbay.geometry.vector.Vector3D][source]

Loads a Vector from a dict containing coordinates of the vector.

Parameters

contents – A dict containing coordinates of the vector.

Returns

The loaded Vector2D or Vector3D object.

Examples

>>> contents = {"x": 1.0, "y": 2.0}
>>> Vector.loads(contents)
Vector2D(1.0, 2.0)
>>> contents = {"x": 1.0, "y": 2.0, "z": 3.0}
>>> Vector.loads(contents)
Vector3D(1.0, 2.0, 3.0)
class tensorbay.geometry.vector.Vector2D(*args: float, **kwargs: float)[source]

Bases: tensorbay.utility.user.UserSequence[float]

This class defines the concept of Vector2D.

Vector2D contains the coordinates of a 2D vector.

Parameters
  • x – The x coordinate of the 2D vector.

  • y – The y coordinate of the 2D vector.

Examples

>>> Vector2D(1, 2)
Vector2D(1, 2)
dumps()Dict[str, float][source]

Dumps the vector into a dict.

Returns

A dict containing the vector coordinate.

Examples

>>> vector_2d = Vector2D(1, 2)
>>> vector_2d.dumps()
{'x': 1, 'y': 2}
classmethod loads(contents: Dict[str, float])tensorbay.geometry.vector._V2[source]

Load a Vector2D object from a dict containing coordinates of a 2D vector.

Parameters

contents – A dict containing coordinates of a 2D vector.

Returns

The loaded Vector2D object.

Examples

>>> contents = {"x": 1.0, "y": 2.0}
>>> Vector2D.loads(contents)
Vector2D(1.0, 2.0)
property x: float

Return the x coordinate of the vector.

Returns

X coordinate in float type.

Examples

>>> vector_2d = Vector2D(1, 2)
>>> vector_2d.x
1
property y: float

Return the y coordinate of the vector.

Returns

Y coordinate in float type.

Examples

>>> vector_2d = Vector2D(1, 2)
>>> vector_2d.y
2
class tensorbay.geometry.vector.Vector3D(*args: float, **kwargs: float)[source]

Bases: tensorbay.utility.user.UserSequence[float]

This class defines the concept of Vector3D.

Vector3D contains the coordinates of a 3D Vector.

Parameters
  • x – The x coordinate of the 3D vector.

  • y – The y coordinate of the 3D vector.

  • z – The z coordinate of the 3D vector.

Examples

>>> Vector3D(1, 2, 3)
Vector3D(1, 2, 3)
dumps()Dict[str, float][source]

Dumps the vector into a dict.

Returns

A dict containing the vector coordinates.

Examples

>>> vector_3d = Vector3D(1, 2, 3)
>>> vector_3d.dumps()
{'x': 1, 'y': 2, 'z': 3}
classmethod loads(contents: Dict[str, float])tensorbay.geometry.vector._V3[source]

Load a Vector3D object from a dict containing coordinates of a 3D vector.

Parameters

contents – A dict contains coordinates of a 3D vector.

Returns

The loaded Vector3D object.

Examples

>>> contents = {"x": 1.0, "y": 2.0, "z": 3.0}
>>> Vector3D.loads(contents)
Vector3D(1.0, 2.0, 3.0)
property x: float

Return the x coordinate of the vector.

Returns

X coordinate in float type.

Examples

>>> vector_3d = Vector3D(1, 2, 3)
>>> vector_3d.x
1
property y: float

Return the y coordinate of the vector.

Returns

Y coordinate in float type.

Examples

>>> vector_3d = Vector3D(1, 2, 3)
>>> vector_3d.y
2
property z: float

Return the z coordinate of the vector.

Returns

Z coordinate in float type.

Examples

>>> vector_3d = Vector3D(1, 2, 3)
>>> vector_3d.z
3

tensorbay.label

tensorbay.label.attributes

Items and AttributeInfo.

AttributeInfo represents the information of an attribute. It refers to the Json schema method to describe an attribute.

Items is the base class of AttributeInfo, representing the items of an attribute.

class tensorbay.label.attributes.AttributeInfo(name: str, *, type_: Union[str, None, Type[Optional[Union[list, bool, int, float, str]]], Iterable[Union[str, None, Type[Optional[Union[list, bool, int, float, str]]]]]] = '', enum: Optional[Iterable[Optional[Union[str, float, bool]]]] = None, minimum: Optional[float] = None, maximum: Optional[float] = None, items: Optional[tensorbay.label.attributes.Items] = None, parent_categories: Union[None, str, Iterable[str]] = None, description: str = '')[source]

Bases: tensorbay.utility.name.NameMixin, tensorbay.label.attributes.Items

This class represents the information of an attribute.

It refers to the Json schema method to describe an attribute.

Todo

The format of argument type_ on the generated web page is incorrect.

Parameters
  • name – The name of the attribute.

  • type

    The type of the attribute value, could be a single type or multi-types. The type must be within the followings:

    • array

    • boolean

    • integer

    • number

    • string

    • null

    • instance

  • enum – All the possible values of an enumeration attribute.

  • minimum – The minimum value of number type attribute.

  • maximum – The maximum value of number type attribute.

  • items – The items inside array type attributes.

  • parent_categories – The parent categories of the attribute.

  • description – The description of the attribute.

type

The type of the attribute value, could be a single type or multi-types.

enum

All the possible values of an enumeration attribute.

minimum

The minimum value of number type attribute.

maximum

The maximum value of number type attribute.

items

The items inside array type attributes.

parent_categories

The parent categories of the attribute.

description

The description of the attribute.

Examples

>>> from tensorbay.label import Items
>>> items = Items(type_="integer", enum=[1, 2, 3, 4, 5], minimum=1, maximum=5)
>>> AttributeInfo(
...     name="example",
...     type_="array",
...     enum=[1, 2, 3, 4, 5],
...     items=items,
...     minimum=1,
...     maximum=5,
...     parent_categories=["parent_category_of_example"],
...     description="This is an example",
... )
AttributeInfo("example")(
  (name): 'example',
  (parent_categories): [
    'parent_category_of_example'
  ],
  (type): 'array',
  (enum): [
    1,
    2,
    3,
    4,
    5
  ],
  (minimum): 1,
  (maximum): 5,
  (items): Items(
    (type): 'integer',
    (enum): [...],
    (minimum): 1,
    (maximum): 5
  )
)
dumps()Dict[str, Any][source]

Dumps the information of this attribute into a dict.

Returns

A dict containing all the information of this attribute.

Examples

>>> from tensorbay.label import Items
>>> items = Items(type_="integer", enum=[1, 2, 3, 4, 5], minimum=1, maximum=5)
>>> attributeinfo = AttributeInfo(
...     name="example",
...     type_="array",
...     enum=[1, 2, 3, 4, 5],
...     items=items,
...     minimum=1,
...     maximum=5,
...     parent_categories=["parent_category_of_example"],
...     description="This is an example",
... )
>>> attributeinfo.dumps()
{
    'name': 'example',
    'description': 'This is an example',
    'type': 'array',
    'items': {'type': 'integer', 'enum': [1, 2, 3], 'minimum': 1, 'maximum': 5},
    'enum': [1, 2, 3, 4, 5],
    'minimum': 1,
    'maximum': 5,
    'parentCategories': ['parent_category_of_example'],
}
classmethod loads(contents: Dict[str, Any])tensorbay.label.attributes._T[source]

Load an AttributeInfo from a dict containing the attribute information.

Parameters

contents – A dict containing the information of the attribute.

Returns

The loaded AttributeInfo object.

Examples

>>> contents = {
    ...     "name": "example",
    ...     "type": "array",
    ...     "enum": [1, 2, 3, 4, 5],
    ...     "items": {"enum": ["true", "false"], "type": "boolean"},
    ...     "minimum": 1,
    ...     "maximum": 5,
    ...     "description": "This is an example",
    ...     "parentCategories": ["parent_category_of_example"],
    ... }
>>> AttributeInfo.loads(contents)
AttributeInfo("example")(
  (name): 'example',
  (parent_categories): [
    'parent_category_of_example'
  ],
  (type): 'array',
  (enum): [
    1,
    2,
    3,
    4,
    5
  ],
  (minimum): 1,
  (maximum): 5,
  (items): Items(
    (type): 'boolean',
    (enum): [...]
  )
)
class tensorbay.label.attributes.Items(*, type_: Union[str, None, Type[Optional[Union[list, bool, int, float, str]]], Iterable[Union[str, None, Type[Optional[Union[list, bool, int, float, str]]]]]] = '', enum: Optional[Iterable[Optional[Union[str, float, bool]]]] = None, minimum: Optional[float] = None, maximum: Optional[float] = None, items: Optional[tensorbay.label.attributes.Items] = None)[source]

Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

The base class of AttributeInfo, representing the items of an attribute.

When the value type of an attribute is array, the AttributeInfo would contain an ‘items’ field.

Todo

The format of argument type_ on the generated web page is incorrect.

Parameters
  • type

    The type of the attribute value, could be a single type or multi-types. The type must be within the followings:

    • array

    • boolean

    • integer

    • number

    • string

    • null

    • instance

  • enum – All the possible values of an enumeration attribute.

  • minimum – The minimum value of number type attribute.

  • maximum – The maximum value of number type attribute.

  • items – The items inside array type attributes.

type

The type of the attribute value, could be a single type or multi-types.

enum

All the possible values of an enumeration attribute.

minimum

The minimum value of number type attribute.

maximum

The maximum value of number type attribute.

items

The items inside array type attributes.

Raises

TypeError – When both enum and type_ are absent or when type_ is array and items is absent.

Examples

>>> Items(type_="integer", enum=[1, 2, 3, 4, 5], minimum=1, maximum=5)
Items(
  (type): 'integer',
  (enum): [...],
  (minimum): 1,
  (maximum): 5
)
dumps()Dict[str, Any][source]

Dumps the information of the items into a dict.

Returns

A dict containing all the information of the items.

Examples

>>> items = Items(type_="integer", enum=[1, 2, 3, 4, 5], minimum=1, maximum=5)
>>> items.dumps()
{'type': 'integer', 'enum': [1, 2, 3, 4, 5], 'minimum': 1, 'maximum': 5}
classmethod loads(contents: Dict[str, Any])tensorbay.label.attributes._T[source]

Load an Items from a dict containing the items information.

Parameters

contents – A dict containing the information of the items.

Returns

The loaded Items object.

Examples

>>> contents = {
...     "type": "array",
...     "enum": [1, 2, 3, 4, 5],
...     "minimum": 1,
...     "maximum": 5,
...     "items": {
...         "enum": [None],
...         "type": "null",
...     },
... }
>>> Items.loads(contents)
Items(
  (type): 'array',
  (enum): [...],
  (minimum): 1,
  (maximum): 5,
  (items): Items(...)
)

tensorbay.label.basic

LabelType, SubcatalogBase, Label.

LabelType is an enumeration type which includes all the supported label types within Label.

Subcatalogbase is the base class for different types of subcatalogs, which defines the basic concept of Subcatalog.

A Data instance contains one or several types of labels, all of which are stored in label.

A subcatalog class extends SubcatalogBase and needed SubcatalogMixin classes.

Different label types correspond to different label classes classes.

label classes

label classes

explaination

Classification

classification type of label

LabeledBox2D

2D bounding box type of label

LabeledBox3D

3D bounding box type of label

LabeledPolygon2D

2D polygon type of label

LabeledPolyline2D

2D polyline type of label

LabeledKeypoints2D

2D keypoints type of label

LabeledSentence

transcripted sentence type of label

class tensorbay.label.basic.Label[source]

Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines label.

It contains growing types of labels referring to different tasks.

Examples

>>> from tensorbay.label import Classification
>>> label = Label()
>>> label.classification = Classification("example_category", {"example_attribute1": "a"})
>>> label
Label(
  (classification): Classification(
    (category): 'example_category',
    (attributes): {...}
  )
)
dumps()Dict[str, Any][source]

Dumps all labels into a dict.

Returns

Dumped labels dict.

Examples

>>> from tensorbay.label import Classification
>>> label = Label()
>>> label.classification = Classification("category1", {"attribute1": "a"})
>>> label.dumps()
{'CLASSIFICATION': {'category': 'category1', 'attributes': {'attribute1': 'a'}}}
classmethod loads(contents: Dict[str, Any])tensorbay.label.basic._T[source]

Loads data from a dict containing the labels information.

Parameters

contents – A dict containing the labels information.

Returns

A Label instance containing labels information from the given dict.

Examples

>>> contents = {
...     "CLASSIFICATION": {
...         "category": "example_category",
...         "attributes": {"example_attribute1": "a"}
...     }
... }
>>> Label.loads(contents)
Label(
  (classification): Classification(
    (category): 'example_category',
    (attributes): {...}
  )
)
class tensorbay.label.basic.LabelType(value)[source]

Bases: tensorbay.utility.type.TypeEnum

This class defines all the supported types within Label.

Examples

>>> LabelType.BOX3D
<LabelType.BOX3D: 'box3d'>
>>> LabelType["BOX3D"]
<LabelType.BOX3D: 'box3d'>
>>> LabelType.BOX3D.name
'BOX3D'
>>> LabelType.BOX3D.value
'box3d'
property subcatalog_type: Type[Any]

Return the corresponding subcatalog class.

Each label type has a corresponding Subcatalog class.

Returns

The corresponding subcatalog type.

Examples

>>> LabelType.BOX3D.subcatalog_type
<class 'tensorbay.label.label_box.Box3DSubcatalog'>
class tensorbay.label.basic.SubcatalogBase(description: str = '')[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This is the base class for different types of subcatalogs.

It defines the basic concept of Subcatalog, which is the collection of the labels information. Subcatalog contains the features, fields and specific definitions of the labels.

The Subcatalog format varies by label type.

Parameters

description – The description of the entire subcatalog.

description

The description of the entire subcatalog.

dumps()Dict[str, Any][source]

Dumps all the information of the subcatalog into a dict.

Returns

A dict containing all the information of the subcatalog.

classmethod loads(contents: Dict[str, Any])tensorbay.label.basic._T[source]

Loads a subcatalog from a dict containing the information of the subcatalog.

Parameters

contents – A dict containing the information of the subcatalog.

Returns

The loaded SubcatalogBase object.

tensorbay.label.catalog

Catalog.

Catalog is used to describe the types of labels contained in a DatasetBase and all the optional values of the label contents.

A Catalog contains one or several SubcatalogBase, corresponding to different types of labels.

subcatalog classes

subcatalog classes

explaination

ClassificationSubcatalog

subcatalog for classification type of label

Box2DSubcatalog

subcatalog for 2D bounding box type of label

Box3DSubcatalog

subcatalog for 3D bounding box type of label

Keypoints2DSubcatalog

subcatalog for 2D polygon type of label

Polygon2DSubcatalog

subcatalog for 2D polyline type of label

Polyline2DSubcatalog

subcatalog for 2D keypoints type of label

SentenceSubcatalog

subcatalog for transcripted sentence type of label

class tensorbay.label.catalog.Catalog[source]

Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the concept of catalog.

Catalog is used to describe the types of labels contained in a DatasetBase and all the optional values of the label contents.

A Catalog contains one or several SubcatalogBase, corresponding to different types of labels. Each of the SubcatalogBase contains the features, fields and the specific definitions of the labels.

Examples

>>> from tensorbay.utility import NameOrderedDict
>>> from tensorbay.label import ClassificationSubcatalog, CategoryInfo
>>> classification_subcatalog = ClassificationSubcatalog()
>>> categories = NameOrderedDict()
>>> categories.append(CategoryInfo("example"))
>>> classification_subcatalog.categories = categories
>>> catalog = Catalog()
>>> catalog.classification = classification_subcatalog
>>> catalog
Catalog(
  (classification): ClassificationSubcatalog(
    (categories): NameOrderedDict {...}
  )
)
dumps()Dict[str, Any][source]

Dumps the catalog into a dict containing the information of all the subcatalog.

Returns

A dict containing all the subcatalog information with their label types as keys.

Examples

>>> # catalog is the instance initialized above.
>>> catalog.dumps()
{'CLASSIFICATION': {'categories': [{'name': 'example'}]}}
classmethod loads(contents: Dict[str, Any])tensorbay.label.catalog._T[source]

Load a Catalog from a dict containing the catalog information.

Parameters

contents – A dict containing all the information of the catalog.

Returns

The loaded Catalog object.

Examples

>>> contents = {
...     "CLASSIFICATION": {
...         "categories": [
...             {
...                 "name": "example",
...             }
...         ]
...     },
...     "KEYPOINTS2D": {
...         "keypoints": [
...             {
...                 "number": 5,
...             }
...         ]
...     },
... }
>>> Catalog.loads(contents)
Catalog(
  (classification): ClassificationSubcatalog(
    (categories): NameOrderedDict {...}
  ),
  (keypoints2d): Keypoints2DSubcatalog(
    (is_tracking): False,
    (keypoints): [...]
  )
)

tensorbay.label.label_box

LabeledBox2D ,LabeledBox3D, Box2DSubcatalog, Box3DSubcatalog.

Box2DSubcatalog defines the subcatalog for 2D box type of labels.

LabeledBox2D is the 2D bounding box type of label, which is often used for CV tasks such as object detection.

Box3DSubcatalog defines the subcatalog for 3D box type of labels.

LabeledBox3D is the 3D bounding box type of label, which is often used for object detection in 3D point cloud.

class tensorbay.label.label_box.Box2DSubcatalog(is_tracking: bool = False)[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the subcatalog for 2D box type of labels.

Parameters

is_tracking – A boolean value indicates whether the corresponding subcatalog contains tracking information.

description

The description of the entire 2D box subcatalog.

categories

All the possible categories in the corresponding dataset stored in a NameOrderedDict with the category names as keys and the CategoryInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.supports.CategoryInfo]

category_delimiter

The delimiter in category values indicating parent-child relationship.

Type

str

attributes

All the possible attributes in the corresponding dataset stored in a NameOrderedDict with the attribute names as keys and the AttributeInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.attributes.AttributeInfo]

is_tracking

Whether the Subcatalog contains tracking information.

Examples

Initialization Method 1: Init from Box2DSubcatalog.loads() method.

>>> catalog = {
...     "BOX2D": {
...         "isTracking": True,
...         "categoryDelimiter": ".",
...         "categories": [{"name": "0"}, {"name": "1"}],
...         "attributes": [{"name": "gender", "enum": ["male", "female"]}],
...     }
... }
>>> Box2DSubcatalog.loads(catalog["BOX2D"])
Box2DSubcatalog(
  (is_tracking): True,
  (category_delimiter): '.',
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)

Initialization Method 2: Init an empty Box2DSubcatalog and then add the attributes.

>>> from tensorbay.utility import NameOrderedDict
>>> from tensorbay.label import CategoryInfo, AttributeInfo
>>> categories = NameOrderedDict()
>>> categories.append(CategoryInfo("a"))
>>> attributes = NameOrderedDict()
>>> attributes.append(AttributeInfo("gender", enum=["female", "male"]))
>>> box2d_subcatalog = Box2DSubcatalog()
>>> box2d_subcatalog.is_tracking = True
>>> box2d_subcatalog.category_delimiter = "."
>>> box2d_subcatalog.categories = categories
>>> box2d_subcatalog.attributes = attributes
>>> box2d_subcatalog
Box2DSubcatalog(
  (is_tracking): True,
  (category_delimiter): '.',
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)
class tensorbay.label.label_box.Box3DSubcatalog(is_tracking: bool = False)[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the subcatalog for 3D box type of labels.

Parameters

is_tracking – A boolean value indicates whether the corresponding subcatalog contains tracking information.

description

The description of the entire 3D box subcatalog.

categories

All the possible categories in the corresponding dataset stored in a NameOrderedDict with the category names as keys and the CategoryInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.supports.CategoryInfo]

category_delimiter

The delimiter in category values indicating parent-child relationship.

Type

str

attributes

All the possible attributes in the corresponding dataset stored in a NameOrderedDict with the attribute names as keys and the AttributeInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.attributes.AttributeInfo]

is_tracking

Whether the Subcatalog contains tracking information.

Examples

Initialization Method 1: Init from Box3DSubcatalog.loads() method.

>>> catalog = {
...     "BOX3D": {
...         "isTracking": True,
...         "categoryDelimiter": ".",
...         "categories": [{"name": "0"}, {"name": "1"}],
...         "attributes": [{"name": "gender", "enum": ["male", "female"]}],
...     }
... }
>>> Box3DSubcatalog.loads(catalog["BOX3D"])
Box3DSubcatalog(
  (is_tracking): True,
  (category_delimiter): '.',
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)

Initialization Method 2: Init an empty Box3DSubcatalog and then add the attributes.

>>> from tensorbay.utility import NameOrderedDict
>>> from tensorbay.label import CategoryInfo, AttributeInfo
>>> categories = NameOrderedDict()
>>> categories.append(CategoryInfo("a"))
>>> attributes = NameOrderedDict()
>>> attributes.append(AttributeInfo("gender", enum=["female", "male"]))
>>> box3d_subcatalog = Box3DSubcatalog()
>>> box3d_subcatalog.is_tracking = True
>>> box3d_subcatalog.category_delimiter = "."
>>> box3d_subcatalog.categories = categories
>>> box3d_subcatalog.attributes = attributes
>>> box3d_subcatalog
Box3DSubcatalog(
  (is_tracking): True,
  (category_delimiter): '.',
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)
class tensorbay.label.label_box.LabeledBox2D(xmin: float, ymin: float, xmax: float, ymax: float, *, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)[source]

Bases: tensorbay.utility.user.UserSequence[float]

This class defines the concept of 2D bounding box label.

LabeledBox2D is the 2D bounding box type of label, which is often used for CV tasks such as object detection.

Parameters
  • xmin – The x coordinate of the top-left vertex of the labeled 2D box.

  • ymin – The y coordinate of the top-left vertex of the labeled 2D box.

  • xmax – The x coordinate of the bottom-right vertex of the labeled 2D box.

  • ymax – The y coordinate of the bottom-right vertex of the labeled 2D box.

  • category – The category of the label.

  • attributes – The attributs of the label.

  • instance – The instance id of the label.

category

The category of the label.

Type

str

attributes

The attributes of the label.

Type

Dict[str, Any]

instance

The instance id of the label.

Type

str

Examples

>>> xmin, ymin, xmax, ymax = 1, 2, 4, 4
>>> LabeledBox2D(
...     xmin,
...     ymin,
...     xmax,
...     ymax,
...     category="example",
...     attributes={"attr": "a"},
...     instance="12345",
... )
LabeledBox2D(1, 2, 4, 4)(
  (category): 'example',
  (attributes): {...},
  (instance): '12345'
)
dumps()Dict[str, Any][source]

Dumps the current 2D bounding box label into a dict.

Returns

A dict containing all the information of the 2D box label.

Examples

>>> xmin, ymin, xmax, ymax = 1, 2, 4, 4
>>> labelbox2d = LabeledBox2D(
...     xmin,
...     ymin,
...     xmax,
...     ymax,
...     category="example",
...     attributes={"attr": "a"},
...     instance="12345",
... )
>>> labelbox2d.dumps()
{
    'category': 'example',
    'attributes': {'attr': 'a'},
    'instance': '12345',
    'box2d': {'xmin': 1, 'ymin': 2, 'xmax': 4, 'ymax': 4},
}
classmethod from_xywh(x: float, y: float, width: float, height: float, *, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)tensorbay.label.label_box._T[source]

Create a LabeledBox2D instance from the top-left vertex, the width and height.

Parameters
  • x – X coordinate of the top left vertex of the box.

  • y – Y coordinate of the top left vertex of the box.

  • width – Length of the box along the x axis.

  • height – Length of the box along the y axis.

  • category – The category of the label.

  • attributes – The attributs of the label.

  • instance – The instance id of the label.

Returns

The created LabeledBox2D instance.

Examples

>>> x, y, width, height = 1, 2, 3, 4
>>> LabeledBox2D.from_xywh(
...     x,
...     y,
...     width,
...     height,
...     category="example",
...     attributes={"key": "value"},
...     instance="12345",
... )
LabeledBox2D(1, 2, 4, 6)(
  (category): 'example',
  (attributes): {...},
  (instance): '12345'
)
classmethod loads(contents: Dict[str, Any])tensorbay.label.label_box._T[source]

Loads a LabeledBox2D from a dict containing the information of the label.

Parameters

contents – A dict containing the information of the 2D bounding box label.

Returns

The loaded LabeledBox2D object.

Examples

>>> contents = {
...     "box2d": {"xmin": 1, "ymin": 2, "xmax": 5, "ymax": 8},
...     "category": "example",
...     "attributes": {"key": "value"},
...     "instance": "12345",
... }
>>> LabeledBox2D.loads(contents)
LabeledBox2D(1, 2, 5, 8)(
  (category): 'example',
  (attributes): {...},
  (instance): '12345'
)
class tensorbay.label.label_box.LabeledBox3D(size: Iterable[float], translation: Iterable[float] = (0, 0, 0), rotation: Union[Iterable[float], quaternion.quaternion] = (1, 0, 0, 0), *, transform_matrix: Optional[Union[Sequence[Sequence[float]], numpy.ndarray]] = None, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the concept of 3D bounding box label.

LabeledBox3D is the 3D bounding box type of label, which is often used for object detection in 3D point cloud.

Parameters
  • size – Size of the 3D bounding box label in a sequence of [x, y, z].

  • translation – Translation of the 3D bounding box label in a sequence of [x, y, z].

  • rotation – Rotation of the 3D bounding box label in a sequence of [w, x, y, z] or a numpy quaternion object.

  • transform_matrix – A 4x4 or 3x4 transformation matrix.

  • category – Category of the 3D bounding box label.

  • attributes – Attributs of the 3D bounding box label.

  • instance – The instance id of the 3D bounding box label.

category

The category of the label.

Type

str

attributes

The attributes of the label.

Type

Dict[str, Any]

instance

The instance id of the label.

Type

str

size

The size of the 3D bounding box.

transform

The transform of the 3D bounding box.

Examples

>>> LabeledBox3D(
...     size=[1, 2, 3],
...     translation=(1, 2, 3),
...     rotation=(0, 1, 0, 0),
...     category="example",
...     attributes={"key": "value"},
...     instance="12345",
... )
LabeledBox3D(
  (size): Vector3D(1, 2, 3),
  (translation): Vector3D(1, 2, 3),
  (rotation): quaternion(0, 1, 0, 0),
  (category): 'example',
  (attributes): {...},
  (instance): '12345'
)
dumps()Dict[str, Any][source]

Dumps the current 3D bounding box label into a dict.

Returns

A dict containing all the information of the 3D bounding box label.

Examples

>>> labeledbox3d = LabeledBox3D(
...     size=[1, 2, 3],
...     translation=(1, 2, 3),
...     rotation=(0, 1, 0, 0),
...     category="example",
...     attributes={"key": "value"},
...     instance="12345",
... )
>>> labeledbox3d.dumps()
{
    'category': 'example',
    'attributes': {'key': 'value'},
    'instance': '12345',
    'box3d': {
        'translation': {'x': 1, 'y': 2, 'z': 3},
        'rotation': {'w': 0.0, 'x': 1.0, 'y': 0.0, 'z': 0.0},
        'size': {'x': 1, 'y': 2, 'z': 3},
    },
}
classmethod loads(contents: Dict[str, Any])tensorbay.label.label_box._T[source]

Loads a LabeledBox3D from a dict containing the information of the label.

Parameters

contents – A dict containing the information of the 3D bounding box label.

Returns

The loaded LabeledBox3D object.

Examples

>>> contents = {
...     "box3d": {
...         "size": {"x": 1, "y": 2, "z": 3},
...         "translation": {"x": 1, "y": 2, "z": 3},
...         "rotation": {"w": 1, "x": 0, "y": 0, "z": 0},
...     },
...     "category": "test",
...     "attributes": {"key": "value"},
...     "instance": "12345",
... }
>>> LabeledBox3D.loads(contents)
LabeledBox3D(
  (size): Vector3D(1, 2, 3),
  (translation): Vector3D(1, 2, 3),
  (rotation): quaternion(1, 0, 0, 0),
  (category): 'test',
  (attributes): {...},
  (instance): '12345'
)

tensorbay.label.label_classification

Classification.

ClassificationSubcatalog defines the subcatalog for classification type of labels.

Classification defines the concept of classification label, which can apply to different types of data, such as images and texts.

class tensorbay.label.label_classification.Classification(category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None)[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the concept of classification label.

Classification is the classification type of label, which applies to different types of data, such as images and texts.

Parameters
  • category – The category of the label.

  • attributes – The attributes of the label.

category

The category of the label.

Type

str

attributes

The attributes of the label.

Type

Dict[str, Any]

Examples

>>> Classification(category="example", attributes={"attr": "a"})
Classification(
  (category): 'example',
  (attributes): {...}
)
classmethod loads(contents: Dict[str, Any])tensorbay.label.label_classification._T[source]

Loads a Classification label from a dict containing the label information.

Parameters

contents – A dict containing the information of the classification label.

Returns

The loaded Classification object.

Examples

>>> contents = {"category": "example", "attributes": {"key": "value"}}
>>> Classification.loads(contents)
Classification(
  (category): 'example',
  (attributes): {...}
)
class tensorbay.label.label_classification.ClassificationSubcatalog(description: str = '')[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the subcatalog for classification type of labels.

description

The description of the entire classification subcatalog.

categories

All the possible categories in the corresponding dataset stored in a NameOrderedDict with the category names as keys and the CategoryInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.supports.CategoryInfo]

category_delimiter

The delimiter in category values indicating parent-child relationship.

Type

str

attributes

All the possible attributes in the corresponding dataset stored in a NameOrderedDict with the attribute names as keys and the AttributeInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.attributes.AttributeInfo]

Examples

Initialization Method 1: Init from ClassificationSubcatalog.loads() method.

>>> catalog = {
...     "CLASSIFICATION": {
...         "categoryDelimiter": ".",
...         "categories": [
...             {"name": "a"},
...             {"name": "b"},
...         ],
...          "attributes": [{"name": "gender", "enum": ["male", "female"]}],
...     }
... }
>>> ClassificationSubcatalog.loads(catalog["CLASSIFICATION"])
ClassificationSubcatalog(
  (category_delimiter): '.',
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)

Initialization Method 2: Init an empty ClassificationSubcatalog and then add the attributes.

>>> from tensorbay.utility import NameOrderedDict
>>> from tensorbay.label import CategoryInfo, AttributeInfo, KeypointsInfo
>>> categories = NameOrderedDict()
>>> categories.append(CategoryInfo("a"))
>>> attributes = NameOrderedDict()
>>> attributes.append(AttributeInfo("gender", enum=["female", "male"]))
>>> classification_subcatalog = ClassificationSubcatalog()
>>> classification_subcatalog.category_delimiter = "."
>>> classification_subcatalog.categories = categories
>>> classification_subcatalog.attributes = attributes
>>> classification_subcatalog
ClassificationSubcatalog(
  (category_delimiter): '.',
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)

tensorbay.label.label_keypoints

LabeledKeypoints2D, Keypoints2DSubcatalog.

Keypoints2DSubcatalog defines the subcatalog for 2D keypoints type of labels.

LabeledKeypoints2D is the 2D keypoints type of label, which is often used for CV tasks such as human body pose estimation.

class tensorbay.label.label_keypoints.Keypoints2DSubcatalog(is_tracking: bool = False)[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the subcatalog for 2D keypoints type of labels.

Parameters

is_tracking – A boolean value indicates whether the corresponding subcatalog contains tracking information.

description

The description of the entire 2D keypoints subcatalog.

categories

All the possible categories in the corresponding dataset stored in a NameOrderedDict with the category names as keys and the CategoryInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.supports.CategoryInfo]

category_delimiter

The delimiter in category values indicating parent-child relationship.

Type

str

attributes

All the possible attributes in the corresponding dataset stored in a NameOrderedDict with the attribute names as keys and the AttributeInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.attributes.AttributeInfo]

is_tracking

Whether the Subcatalog contains tracking information.

Examples

Initialization Method 1: Init from Keypoints2DSubcatalog.loads() method.

>>> catalog = {
...     "KEYPOINTS2D": {
...         "isTracking": True,
...         "categories": [{"name": "0"}, {"name": "1"}],
...         "attributes": [{"name": "gender", "enum": ["male", "female"]}],
...         "keypoints": [
...             {
...                 "number": 2,
...                  "names": ["L_shoulder", "R_Shoulder"],
...                  "skeleton": [(0, 1)],
...             }
...         ],
...     }
... }
>>> Keypoints2DSubcatalog.loads(catalog["KEYPOINTS2D"])
Keypoints2DSubcatalog(
  (is_tracking): True,
  (keypoints): [...],
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)

Initialization Method 2: Init an empty Keypoints2DSubcatalog and then add the attributes.

>>> from tensorbay.label import CategoryInfo, AttributeInfo, KeypointsInfo
>>> from tensorbay.utility import NameOrderedDict
>>> categories = NameOrderedDict()
>>> categories.append(CategoryInfo("a"))
>>> attributes = NameOrderedDict()
>>> attributes.append(AttributeInfo("gender", enum=["female", "male"]))
>>> keypoints2d_subcatalog = Keypoints2DSubcatalog()
>>> keypoints2d_subcatalog.is_tracking = True
>>> keypoints2d_subcatalog.categories = categories
>>> keypoints2d_subcatalog.attributes = attributes
>>> keypoints2d_subcatalog.add_keypoints(
...     2,
...     names=["L_shoulder", "R_Shoulder"],
...     skeleton=[(0,1)],
...     visible="BINARY",
...     parent_categories="shoulder",
...     description="12345",
... )
>>> keypoints2d_subcatalog
Keypoints2DSubcatalog(
  (is_tracking): True,
  (keypoints): [...],
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)
add_keypoints(number: int, *, names: Optional[Iterable[str]] = None, skeleton: Optional[Iterable[Iterable[int]]] = None, visible: Optional[str] = None, parent_categories: Union[None, str, Iterable[str]] = None, description: str = '')None[source]

Add a type of keypoints to the subcatalog.

Parameters
  • number – The number of keypoints.

  • names – All the names of keypoints.

  • skeleton – The skeleton of the keypoints indicating which keypoint should connect with another.

  • visible – The visible type of the keypoints, can only be ‘BINARY’ or ‘TERNARY’. It determines the range of the Keypoint2D.v.

  • parent_categories – The parent categories of the keypoints.

  • description – The description of keypoints.

Examples

>>> keypoints2d_subcatalog = Keypoints2DSubcatalog()
>>> keypoints2d_subcatalog.add_keypoints(
...     2,
...     names=["L_shoulder", "R_Shoulder"],
...     skeleton=[(0,1)],
...     visible="BINARY",
...     parent_categories="shoulder",
...     description="12345",
... )
>>> keypoints2d_subcatalog.keypoints
[KeypointsInfo(
  (number): 2,
  (names): [...],
  (skeleton): [...],
  (visible): 'BINARY',
  (parent_categories): [...]
)]
dumps()Dict[str, Any][source]

Dumps all the information of the keypoints into a dict.

Returns

A dict containing all the information of this Keypoints2DSubcatalog.

Examples

>>> # keypoints2d_subcatalog is the instance initialized above.
>>> keypoints2d_subcatalog.dumps()
{
    'isTracking': True,
    'categories': [{'name': 'a'}],
    'attributes': [{'name': 'gender', 'enum': ['female', 'male']}],
    'keypoints': [
        {
            'number': 2,
            'names': ['L_shoulder', 'R_Shoulder'],
            'skeleton': [(0, 1)],
        }
    ]
}
property keypoints: List[tensorbay.label.supports.KeypointsInfo]

Return the KeypointsInfo of the Subcatalog.

Returns

A list of KeypointsInfo.

Examples

>>> keypoints2d_subcatalog = Keypoints2DSubcatalog()
>>> keypoints2d_subcatalog.add_keypoints(2)
>>> keypoints2d_subcatalog.keypoints
[KeypointsInfo(
  (number): 2
)]
class tensorbay.label.label_keypoints.LabeledKeypoints2D(keypoints: Optional[Iterable[Iterable[float]]] = None, *, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)[source]

Bases: tensorbay.geometry.polygon.PointList2D[tensorbay.geometry.keypoint.Keypoint2D]

This class defines the concept of 2D keypoints label.

LabeledKeypoints2D is the 2D keypoints type of label, which is often used for CV tasks such as human body pose estimation.

Parameters
  • keypoints – A list of 2D keypoint.

  • category – The category of the label.

  • attributes – The attributes of the label.

  • instance – The instance id of the label.

category

The category of the label.

Type

str

attributes

The attributes of the label.

Type

Dict[str, Any]

instance

The instance id of the label.

Type

str

Examples

>>> LabeledKeypoints2D(
...     [(1, 2), (2, 3)],
...     category="example",
...     attributes={"key": "value"},
...     instance="123",
... )
LabeledKeypoints2D [
  Keypoint2D(1, 2),
  Keypoint2D(2, 3)
](
  (category): 'example',
  (attributes): {...},
  (instance): '123'
)
dumps()Dict[str, Any][source]

Dumps the current 2D keypoints label into a dict.

Returns

A dict containing all the information of the 2D keypoints label.

Examples

>>> labeledkeypoints2d = LabeledKeypoints2D(
...     [(1, 1, 2), (2, 2, 2)],
...     category="example",
...     attributes={"key": "value"},
...     instance="123",
... )
>>> labeledkeypoints2d.dumps()
{
    'category': 'example',
    'attributes': {'key': 'value'},
    'instance': '123',
    'keypoints2d': [{'x': 1, 'y': 1, 'v': 2}, {'x': 2, 'y': 2, 'v': 2}],
}
classmethod loads(contents: Dict[str, Any])tensorbay.label.label_keypoints._T[source]

Loads a LabeledKeypoints2D from a dict containing the information of the label.

Parameters

contents – A dict containing the information of the 2D keypoints label.

Returns

The loaded LabeledKeypoints2D object.

Examples

>>> contents = {
...     "keypoints2d": [
...         {"x": 1, "y": 1, "v": 2},
...         {"x": 2, "y": 2, "v": 2},
...     ],
...     "category": "example",
...     "attributes": {"key": "value"},
...     "instance": "12345",
... }
>>> LabeledKeypoints2D.loads(contents)
LabeledKeypoints2D [
  Keypoint2D(1, 1, 2),
  Keypoint2D(2, 2, 2)
](
  (category): 'example',
  (attributes): {...},
  (instance): '12345'
)

tensorbay.label.label_polygon

LabeledPolygon2D, Polygon2DSubcatalog.

Polygon2DSubcatalog defines the subcatalog for 2D polygon type of labels.

LabeledPolygon2D is the 2D polygon type of label, which is often used for CV tasks such as semantic segmentation.

class tensorbay.label.label_polygon.LabeledPolygon2D(points: Optional[Iterable[Iterable[float]]] = None, *, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)[source]

Bases: tensorbay.geometry.polygon.PointList2D[tensorbay.geometry.vector.Vector2D]

This class defines the concept of polygon2D label.

LabeledPolygon2D is the 2D polygon type of label, which is often used for CV tasks such as semantic segmentation.

Parameters
  • points – A list of 2D points representing the vertexes of the 2D polygon.

  • category – The category of the label.

  • attributes – The attributs of the label.

  • instance – The instance id of the label.

category

The category of the label.

Type

str

attributes

The attributes of the label.

Type

Dict[str, Any]

instance

The instance id of the label.

Type

str

Examples

>>> LabeledPolygon2D(
...     [(1, 2), (2, 3), (1, 3)],
...     category = "example",
...     attributes = {"key": "value"},
...     instance = "123",
... )
LabeledPolygon2D [
  Vector2D(1, 2),
  Vector2D(2, 3),
  Vector2D(1, 3)
](
  (category): 'example',
  (attributes): {...},
  (instance): '123'
)
dumps()Dict[str, Any][source]

Dumps the current 2D polygon label into a dict.

Returns

A dict containing all the information of the 2D polygon label.

Examples

>>> labeledpolygon2d = LabeledPolygon2D(
...     [(1, 2), (2, 3), (1, 3)],
...     category = "example",
...     attributes = {"key": "value"},
...     instance = "123",
... )
>>> labeledpolygon2d.dumps()
{
    'category': 'example',
    'attributes': {'key': 'value'},
    'instance': '123',
    'polygon2d': [{'x': 1, 'y': 2}, {'x': 2, 'y': 3}, {'x': 1, 'y': 3}],
}
classmethod loads(contents: Dict[str, Any])tensorbay.label.label_polygon._T[source]

Loads a LabeledPolygon2D from a dict containing the information of the label.

Parameters

contents – A dict containing the information of the 2D polygon label.

Returns

The loaded LabeledPolygon2D object.

Examples

>>> contents = {
...     "polygon2d": [
...         {"x": 1, "y": 2},
...         {"x": 2, "y": 3},
...         {"x": 1, "y": 3},
...     ],
...     "category": "example",
...     "attributes": {"key": "value"},
...     "instance": "12345",
... }
>>> LabeledPolygon2D.loads(contents)
LabeledPolygon2D [
  Vector2D(1, 2),
  Vector2D(2, 3),
  Vector2D(1, 3)
](
  (category): 'example',
  (attributes): {...},
  (instance): '12345'
)
class tensorbay.label.label_polygon.Polygon2DSubcatalog(is_tracking: bool = False)[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the subcatalog for 2D polygon type of labels.

Parameters

is_tracking – A boolean value indicates whether the corresponding subcatalog contains tracking information.

description

The description of the entire 2D polygon subcatalog.

categories

All the possible categories in the corresponding dataset stored in a NameOrderedDict with the category names as keys and the CategoryInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.supports.CategoryInfo]

category_delimiter

The delimiter in category values indicating parent-child relationship.

Type

str

attributes

All the possible attributes in the corresponding dataset stored in a NameOrderedDict with the attribute names as keys and the AttributeInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.attributes.AttributeInfo]

is_tracking

Whether the Subcatalog contains tracking information.

Examples

Initialization Method 1: Init from Polygon2DSubcatalog.loads() method.

>>> catalog = {
...     "POLYGON2D": {
...         "isTracking": True,
...         "categories": [{"name": "0"}, {"name": "1"}],
...         "attributes": [{"name": "gender", "enum": ["male", "female"]}],
...     }
... }
>>> Polygon2DSubcatalog.loads(catalog["POLYGON2D"])
Polygon2DSubcatalog(
  (is_tracking): True,
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)

Initialization Method 2: Init an empty Polygon2DSubcatalog and then add the attributes.

>>> from tensorbay.utility import NameOrderedDict
>>> from tensorbay.label import CategoryInfo, AttributeInfo
>>> categories = NameOrderedDict()
>>> categories.append(CategoryInfo("a"))
>>> attributes = NameOrderedDict()
>>> attributes.append(AttributeInfo("gender", enum=["female", "male"]))
>>> polygon2d_subcatalog = Polygon2DSubcatalog()
>>> polygon2d_subcatalog.is_tracking = True
>>> polygon2d_subcatalog.categories = categories
>>> polygon2d_subcatalog.attributes = attributes
>>> polygon2d_subcatalog
Polygon2DSubcatalog(
  (is_tracking): True,
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)

tensorbay.label.label_polyline

LabeledPolyline2D, Polyline2DSubcatalog.

Polyline2DSubcatalog defines the subcatalog for 2D polyline type of labels.

LabeledPolyline2D is the 2D polyline type of label, which is often used for CV tasks such as lane detection.

class tensorbay.label.label_polyline.LabeledPolyline2D(points: Optional[Iterable[Iterable[float]]] = None, *, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)[source]

Bases: tensorbay.geometry.polygon.PointList2D[tensorbay.geometry.vector.Vector2D]

This class defines the concept of polyline2D label.

LabeledPolyline2D is the 2D polyline type of label, which is often used for CV tasks such as lane detection.

Parameters
  • points – A list of 2D points representing the vertexes of the 2D polyline.

  • category – The category of the label.

  • attributes – The attributes of the label.

  • instance – The instance id of the label.

category

The category of the label.

Type

str

attributes

The attributes of the label.

Type

Dict[str, Any]

instance

The instance id of the label.

Type

str

Examples

>>> LabeledPolyline2D(
...     [(1, 2), (2, 4), (2, 1)],
...     category="example",
...     attributes={"key": "value"},
...     instance="123",
... )
LabeledPolyline2D [
  Vector2D(1, 2),
  Vector2D(2, 4),
  Vector2D(2, 1)
](
  (category): 'example',
  (attributes): {...},
  (instance): '123'
)
dumps()Dict[str, Any][source]

Dumps the current 2D polyline label into a dict.

Returns

A dict containing all the information of the 2D polyline label.

Examples

>>> labeledpolyline2d = LabeledPolyline2D(
...     [(1, 2), (2, 4), (2, 1)],
...     category="example",
...     attributes={"key": "value"},
...     instance="123",
... )
>>> labeledpolyline2d.dumps()
{
    'category': 'example',
    'attributes': {'key': 'value'},
    'instance': '123',
    'polyline2d': [{'x': 1, 'y': 2}, {'x': 2, 'y': 4}, {'x': 2, 'y': 1}],
}
classmethod loads(contents: Dict[str, Any])tensorbay.label.label_polyline._T[source]

Loads a LabeledPolyline2D from a dict containing the information of the label.

Parameters

contents – A dict containing the information of the 2D polyline label.

Returns

The loaded LabeledPolyline2D object.

Examples

>>> contents = {
...     "polyline2d": [{'x': 1, 'y': 2}, {'x': 2, 'y': 4}, {'x': 2, 'y': 1}],
...     "category": "example",
...     "attributes": {"key": "value"},
...     "instance": "12345",
... }
>>> LabeledPolyline2D.loads(contents)
LabeledPolyline2D [
  Vector2D(1, 2),
  Vector2D(2, 4),
  Vector2D(2, 1)
](
  (category): 'example',
  (attributes): {...},
  (instance): '12345'
)
class tensorbay.label.label_polyline.Polyline2DSubcatalog(is_tracking: bool = False)[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the subcatalog for 2D polyline type of labels.

Parameters

is_tracking – A boolean value indicates whether the corresponding subcatalog contains tracking information.

description

The description of the entire 2D polyline subcatalog.

categories

All the possible categories in the corresponding dataset stored in a NameOrderedDict with the category names as keys and the CategoryInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.supports.CategoryInfo]

category_delimiter

The delimiter in category values indicating parent-child relationship.

Type

str

attributes

All the possible attributes in the corresponding dataset stored in a NameOrderedDict with the attribute names as keys and the AttributeInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.attributes.AttributeInfo]

is_tracking

Whether the Subcatalog contains tracking information.

Examples

Initialization Method 1: Init from Polyline2DSubcatalog.loads() method.

>>> catalog = {
...     "POLYLINE2D": {
...         "isTracking": True,
...         "categories": [{"name": "0"}, {"name": "1"}],
...         "attributes": [{"name": "gender", "enum": ["male", "female"]}],
...     }
... }
>>> Polyline2DSubcatalog.loads(catalog["POLYLINE2D"])
Polyline2DSubcatalog(
  (is_tracking): True,
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)

Initialization Method 2: Init an empty Polyline2DSubcatalog and then add the attributes.

>>> from tensorbay.label import CategoryInfo, AttributeInfo
>>> from tensorbay.utility import NameOrderedDict
>>> categories = NameOrderedDict()
>>> categories.append(CategoryInfo("a"))
>>> attributes = NameOrderedDict()
>>> attributes.append(AttributeInfo("gender", enum=["female", "male"]))
>>> polyline2d_subcatalog = Polyline2DSubcatalog()
>>> polyline2d_subcatalog.is_tracking = True
>>> polyline2d_subcatalog.categories = categories
>>> polyline2d_subcatalog.attributes = attributes
>>> polyline2d_subcatalog
Polyline2DSubcatalog(
  (is_tracking): True,
  (categories): NameOrderedDict {...},
  (attributes): NameOrderedDict {...}
)

tensorbay.label.label_sentence

Word, LabeledSentence, SentenceSubcatalog.

SentenceSubcatalog defines the subcatalog for audio transcripted sentence type of labels.

Word is a word within a phonetic transcription sentence, containing the content of the word, the start and end time in the audio.

LabeledSentence is the transcripted sentence type of label. which is often used for tasks such as automatic speech recognition.

class tensorbay.label.label_sentence.LabeledSentence(sentence: Optional[Iterable[tensorbay.label.label_sentence.Word]] = None, spell: Optional[Iterable[tensorbay.label.label_sentence.Word]] = None, phone: Optional[Iterable[tensorbay.label.label_sentence.Word]] = None, *, attributes: Optional[Dict[str, Any]] = None)[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the concept of phonetic transcription lable.

LabeledSentence is the transcripted sentence type of label. which is often used for tasks such as automatic speech recognition.

Parameters
  • sentence – A list of sentence.

  • spell – A list of spell, only exists in Chinese language.

  • phone – A list of phone.

  • attributes – The attributes of the label.

sentence

The transcripted sentence.

spell

The spell within the sentence, only exists in Chinese language.

phone

The phone of the sentence label.

attributes

The attributes of the label.

Type

Dict[str, Any]

Examples

>>> sentence = [Word(text="qi1shi2", begin=1, end=2)]
>>> spell = [Word(text="qi1", begin=1, end=2)]
>>> phone = [Word(text="q", begin=1, end=2)]
>>> LabeledSentence(
...     sentence,
...     spell,
...     phone,
...     attributes={"key": "value"},
... )
LabeledSentence(
  (sentence): [
    Word(
      (text): 'qi1shi2',
      (begin): 1,
      (end): 2
    )
  ],
  (spell): [
    Word(
      (text): 'qi1',
      (begin): 1,
      (end): 2
    )
  ],
  (phone): [
    Word(
      (text): 'q',
      (begin): 1,
      (end): 2
    )
  ],
  (attributes): {
    'key': 'value'
  }
)
dumps()Dict[str, Any][source]

Dumps the current label into a dict.

Returns

A dict containing all the information of the sentence label.

Examples

>>> sentence = [Word(text="qi1shi2", begin=1, end=2)]
>>> spell = [Word(text="qi1", begin=1, end=2)]
>>> phone = [Word(text="q", begin=1, end=2)]
>>> labeledsentence = LabeledSentence(
...     sentence,
...     spell,
...     phone,
...     attributes={"key": "value"},
... )
>>> labeledsentence.dumps()
{
    'attributes': {'key': 'value'},
    'sentence': [{'text': 'qi1shi2', 'begin': 1, 'end': 2}],
    'spell': [{'text': 'qi1', 'begin': 1, 'end': 2}],
    'phone': [{'text': 'q', 'begin': 1, 'end': 2}]
}
classmethod loads(contents: Dict[str, Any])tensorbay.label.label_sentence._T[source]

Loads a LabeledSentence from a dict containing the information of the label.

Parameters

contents – A dict containing the information of the sentence label.

Returns

The loaded LabeledSentence object.

Examples

>>> contents = {
...     "sentence": [{"text": "qi1shi2", "begin": 1, "end": 2}],
...     "spell": [{"text": "qi1", "begin": 1, "end": 2}],
...     "phone": [{"text": "q", "begin": 1, "end": 2}],
...     "attributes": {"key": "value"},
... }
>>> LabeledSentence.loads(contents)
LabeledSentence(
  (sentence): [
    Word(
      (text): 'qi1shi2',
      (begin): 1,
      (end): 2
    )
  ],
  (spell): [
    Word(
      (text): 'qi1',
      (begin): 1,
      (end): 2
    )
  ],
  (phone): [
    Word(
      (text): 'q',
      (begin): 1,
      (end): 2
    )
  ],
  (attributes): {
    'key': 'value'
  }
)
class tensorbay.label.label_sentence.SentenceSubcatalog(is_sample: bool = False, sample_rate: Optional[int] = None, lexicon: Optional[List[List[str]]] = None)[source]

Bases: tensorbay.utility.type.TypeMixin[tensorbay.label.basic.LabelType], tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the subcatalog for audio transcripted sentence type of labels.

Parameters
  • is_sample – A boolen value indicates whether time format is sample related.

  • sample_rate – The number of samples of audio carried per second.

  • lexicon – A list consists all of text and phone.

description

The description of the entire sentence subcatalog.

is_sample

A boolen value indicates whether time format is sample related.

sample_rate

The number of samples of audio carried per second.

lexicon

A list consists all of text and phone.

attributes

All the possible attributes in the corresponding dataset stored in a NameOrderedDict with the attribute names as keys and the AttributeInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.attributes.AttributeInfo]

Raises

TypeError – When sample_rate is None and is_sample is True.

Examples

Initialization Method 1: Init from SentenceSubcatalog.__init__().

>>> SentenceSubcatalog(True, 16000, [["mean", "m", "iy", "n"]])
SentenceSubcatalog(
  (is_sample): True,
  (sample_rate): 16000,
  (lexicon): [...]
)

Initialization Method 2: Init from SentenceSubcatalog.loads() method.

>>> contents = {
...     "isSample": True,
...     "sampleRate": 16000,
...     "lexicon": [["mean", "m", "iy", "n"]],
...     "attributes": [{"name": "gender", "enum": ["male", "female"]}],
... }
>>> SentenceSubcatalog.loads(contents)
SentenceSubcatalog(
  (is_sample): True,
  (sample_rate): 16000,
  (attributes): NameOrderedDict {...},
  (lexicon): [...]
)
append_lexicon(lexemes: List[str])None[source]

Add lexemes to lexicon.

Parameters

lexemes – A list consists of text and phone.

Examples

>>> sentence_subcatalog = SentenceSubcatalog(True, 16000, [["mean", "m", "iy", "n"]])
>>> sentence_subcatalog.append_lexicon(["example"])
>>> sentence_subcatalog.lexicon
[['mean', 'm', 'iy', 'n'], ['example']]
dumps()Dict[str, Any][source]

Dumps the information of this SentenceSubcatalog into a dict.

Returns

A dict containing all information of this SentenceSubcatalog.

Examples

>>> sentence_subcatalog = SentenceSubcatalog(True, 16000, [["mean", "m", "iy", "n"]])
>>> sentence_subcatalog.dumps()
{'isSample': True, 'sampleRate': 16000, 'lexicon': [['mean', 'm', 'iy', 'n']]}
class tensorbay.label.label_sentence.Word(text: str, begin: Optional[float] = None, end: Optional[float] = None)[source]

Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the concept of word.

Word is a word within a phonetic transcription sentence, containing the content of the word, the start and end time in the audio.

Parameters
  • text – The content of the word.

  • begin – The begin time of the word in the audio.

  • end – The end time of the word in the audio.

text

The content of the word.

begin

The begin time of the word in the audio.

end

The end time of the word in the audio.

Examples

>>> Word(text="example", begin=1, end=2)
Word(
  (text): 'example',
  (begin): 1,
  (end): 2
)
dumps()Dict[str, Union[str, float]][source]

Dumps the current word into a dict.

Returns

A dict containing all the information of the word

Examples

>>> word = Word(text="example", begin=1, end=2)
>>> word.dumps()
{'text': 'example', 'begin': 1, 'end': 2}
classmethod loads(contents: Dict[str, Union[str, float]])tensorbay.label.label_sentence._T[source]

Loads a Word from a dict containing the information of the word.

Parameters

contents – A dict containing the information of the word

Returns

The loaded Word object.

Examples

>>> contents = {"text": "Hello, World", "begin": 1, "end": 2}
>>> Word.loads(contents)
Word(
  (text): 'Hello, World',
  (begin): 1,
  (end): 2
)

tensorbay.label.supports

CatagoryInfo, KeypointsInfo and different SubcatalogMixin classes.

CatagoryInfo defines a category with the name and description of it.

KeypointsInfo defines the structure of a set of keypoints.

SubcatalogMixin is the base class of different mixin classes for subcatalog.

mixin classes for subcatalog

mixin classes for subcatalog

explaination

IsTrackingMixin

a mixin class supporting tracking information of a subcatalog

CategoriesMixin

a mixin class supporting category information of a subcatalog

AttributesMixin

a mixin class supporting attribute information of a subcatalog

class tensorbay.label.supports.AttributesMixin[source]

Bases: tensorbay.label.supports.SubcatalogMixin

A mixin class supporting attribute information of a subcatalog.

attributes

All the possible attributes in the corresponding dataset stored in a NameOrderedDict with the attribute names as keys and the AttributeInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.attributes.AttributeInfo]

add_attribute(name: str, *, type_: Union[str, None, Type[Optional[Union[list, bool, int, float, str]]], Iterable[Union[str, None, Type[Optional[Union[list, bool, int, float, str]]]]]] = '', enum: Optional[Iterable[Optional[Union[str, float, bool]]]] = None, minimum: Optional[float] = None, maximum: Optional[float] = None, items: Optional[tensorbay.label.attributes.Items] = None, parent_categories: Union[None, str, Iterable[str]] = None, description: str = '')None[source]

Add an attribute to the Subcatalog.

Parameters
  • name – The name of the attribute.

  • type – The type of the attribute value, could be a single type or multi-types. The type must be within the followings: - array - boolean - integer - number - string - null - instance

  • enum – All the possible values of an enumeration attribute.

  • minimum – The minimum value of number type attribute.

  • maximum – The maximum value of number type attribute.

  • items – The items inside array type attributes.

  • parent_categories – The parent categories of the attribute.

  • description – The description of the attributes.

class tensorbay.label.supports.CategoriesMixin[source]

Bases: tensorbay.label.supports.SubcatalogMixin

A mixin class supporting category information of a subcatalog.

categories

All the possible categories in the corresponding dataset stored in a NameOrderedDict with the category names as keys and the CategoryInfo as values.

Type

tensorbay.utility.name.NameOrderedDict[tensorbay.label.supports.CategoryInfo]

category_delimiter

The delimiter in category values indicating parent-child relationship.

Type

str

add_category(name: str, description: str = '')None[source]

Add a category to the Subcatalog.

Parameters
  • name – The name of the category.

  • description – The description of the category.

class tensorbay.label.supports.CategoryInfo(name: str, description: str = '')[source]

Bases: tensorbay.utility.name.NameMixin

This class represents the information of a category, including category name and description.

Parameters
  • name – The name of the category.

  • description – The description of the category.

name

The name of the category.

description

The description of the category.

Examples

>>> CategoryInfo(name="example", description="This is an example")
CategoryInfo("example")
dumps()Dict[str, str][source]

Dumps the CatagoryInfo into a dict.

Returns

A dict containing the information in the CategoryInfo.

Examples

>>> categoryinfo = CategoryInfo(name="example", description="This is an example")
>>> categoryinfo.dumps()
{'name': 'example', 'description': 'This is an example'}
classmethod loads(contents: Dict[str, str])tensorbay.label.supports._T[source]

Loads a CategoryInfo from a dict containing the category.

Parameters

contents – A dict containing the information of the category.

Returns

The loaded CategoryInfo object.

Examples

>>> contents = {"name": "example", "description": "This is an exmaple"}
>>> CategoryInfo.loads(contents)
CategoryInfo("example")
class tensorbay.label.supports.IsTrackingMixin(is_tracking: bool = False)[source]

Bases: tensorbay.label.supports.SubcatalogMixin

A mixin class supporting tracking information of a subcatalog.

Parameters

is_tracking – Whether the Subcatalog contains tracking information.

is_tracking

Whether the Subcatalog contains tracking information.

class tensorbay.label.supports.KeypointsInfo(number: int, *, names: Optional[Iterable[str]] = None, skeleton: Optional[Iterable[Iterable[int]]] = None, visible: Optional[str] = None, parent_categories: Union[None, str, Iterable[str]] = None, description: str = '')[source]

Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

This class defines the structure of a set of keypoints.

Parameters
  • number – The number of the set of keypoints.

  • names – All the names of the keypoints.

  • skeleton – The skeleton of the keypoints indicating which keypoint should connect with another.

  • visible – The visible type of the keypoints, can only be ‘BINARY’ or ‘TERNARY’. It determines the range of the Keypoint2D.v.

  • parent_categories – The parent categories of the keypoints.

  • description – The description of the keypoints.

number

The number of the set of keypoints.

names

All the names of the keypoints.

skeleton

The skeleton of the keypoints indicating which keypoint should connect with another.

visible

The visible type of the keypoints, can only be ‘BINARY’ or ‘TERNARY’. It determines the range of the Keypoint2D.v.

parent_categories

The parent categories of the keypoints.

description

The description of the keypoints.

Examples

>>> KeypointsInfo(
...     2,
...     names=["L_Shoulder", "R_Shoulder"],
...     skeleton=[(0, 1)],
...     visible="BINARY",
...     parent_categories="people",
...     description="example",
... )
KeypointsInfo(
  (number): 2,
  (names): [...],
  (skeleton): [...],
  (visible): 'BINARY',
  (parent_categories): [...]
)
dumps()Dict[str, Any][source]

Dumps all the keypoint information into a dict.

Returns

A dict containing all the information of the keypoint.

Examples

>>> keypointsinfo = KeypointsInfo(
...     2,
...     names=["L_Shoulder", "R_Shoulder"],
...     skeleton=[(0, 1)],
...     visible="BINARY",
...     parent_categories="people",
...     description="example",
... )
>>> keypointsinfo.dumps()
{
    'number': 2,
    'names': ['L_Shoulder', 'R_Shoulder'],
    'skeleton': [(0, 1)],
    'visible': 'BINARY',
    'parentCategories': ['people'],
    'description': 'example',
}
classmethod loads(contents: Dict[str, Any])tensorbay.label.supports._T[source]

Loads a KeypointsInfo from a dict containing the information of the keypoints.

Parameters

contents – A dict containing all the information of the set of keypoints.

Returns

The loaded KeypointsInfo object.

Examples

>>> contents = {
...     "number": 2,
...     "names": ["L", "R"],
...     "skeleton": [(0,1)],
...     "visible": "TERNARY",
...     "parentCategories": ["example"],
...     "description": "example",
... }
>>> KeypointsInfo.loads(contents)
KeypointsInfo(
  (number): 2,
  (names): [...],
  (skeleton): [...],
  (visible): 'TERNARY',
  (parent_categories): [...]
)
class tensorbay.label.supports.SubcatalogMixin[source]

Bases: tensorbay.utility.common.EqMixin

The base class of different mixin classes for subcatalog.

tensorbay.opendataset

tensorbay.opendataset.AnimalPose.loader

tensorbay.opendataset.AnimalPose.loader.AnimalPose5(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the 5 Categories Animal-Pose dataset.

The file structure should be like:

<path>
    keypoint_image_part1/
        cat/
            2007_000549.jpg
            2007_000876.jpg
            ...
        ...
    PASCAL2011_animal_annotation/
        cat/
            2007_000549_1.xml
            2007_000876_1.xml
            2007_000876_2.xml
            ...
        ...
    animalpose_image_part2/
        cat/
            ca1.jpeg
            ca2.jpeg
            ...
        ...
    animalpose_anno2/
        cat/
            ca1.xml
            ca2.xml
        ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.AnimalPose.loader.AnimalPose7(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of 7 Categories Animal-Pose dataset.

The file structure should be like:

<path>
    bndbox_image/
        antelope/
            Img-77.jpg
            ...
        ...
    bndbox_anno/
        antelope.json
        ...
Parameters

path – The root directory of the dataset.

Returns

loaded Dataset object.

tensorbay.opendataset.AnimalsWithAttributes2.loader

tensorbay.opendataset.AnimalsWithAttributes2.loader.AnimalsWithAttributes2(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Animals with attributes 2 dataset.

The file structure should be like:

<path>
    classes.txt
    predicates.txt
    predicate-matrix-binary.txt
    JPEGImages/
        <classname>/
            <imagename>.jpg
        ...
    ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.BSTLD.loader

tensorbay.opendataset.BSTLD.loader.BSTLD(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the BSTLD dataset.

The file structure should be like:

<path>
    rgb/
        additional/
            2015-10-05-10-52-01_bag/
                <image_name>.jpg
                ...
            ...
        test/
            <image_name>.jpg
            ...
        train/
            2015-05-29-15-29-39_arastradero_traffic_light_loop_bag/
                <image_name>.jpg
                ...
            ...
    test.yaml
    train.yaml
    additional_train.yaml
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.CarConnection.loader

tensorbay.opendataset.CarConnection.loader.CarConnection(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of The Car Connection Picture dataset.

The file structure should be like:

<path>
    <imagename>.jpg
    ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.CoinImage.loader

tensorbay.opendataset.CoinImage.loader.CoinImage(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Coin Image dataset.

The file structure should be like:

<path>
    classes.csv
    <imagename>.png
    ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.CompCars.loader

tensorbay.opendataset.CompCars.loader.CompCars(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the CompCars dataset.

The file structure should be like:

<path>
    data/
        image/
            <make name id>/
                <model name id>/
                    <year>/
                        <image name>.jpg
                        ...
                    ...
                ...
            ...
        label/
            <make name id>/
                <model name id>/
                    <year>/
                        <image name>.txt
                        ...
                    ...
                ...
            ...
        misc/
            attributes.txt
            car_type.mat
            make_model_name.mat
        train_test_split/
            classification/
                train.txt
                test.txt
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.DeepRoute.loader

tensorbay.opendataset.DeepRoute.loader.DeepRoute(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the DeepRoute Open Dataset.

The file structure should be like:

<path>
    pointcloud/
        00001.bin
        00002.bin
        ...
        10000.bin
    groundtruth/
        00001.txt
        00002.txt
        ...
        10000.txt
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.DogsVsCats.loader

tensorbay.opendataset.DogsVsCats.loader.DogsVsCats(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Dogs vs Cats dataset.

The file structure should be like:

<path>
    train/
        cat.0.jpg
        ...
        dog.0.jpg
        ...
    test/
        1000.jpg
        1001.jpg
        ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.DownsampledImagenet.loader

tensorbay.opendataset.DownsampledImagenet.loader.DownsampledImagenet(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Downsampled Imagenet dataset.

The file structure should be like:

<path>
    valid_32x32/
        <imagename>.png
        ...
    valid_64x64/
        <imagename>.png
        ...
    train_32x32/
        <imagename>.png
        ...
    train_64x64/
        <imagename>.png
        ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.Elpv.loader

tensorbay.opendataset.Elpv.loader.Elpv(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the elpv dataset.

The file structure should be like:

<path>
    labels.csv
    images/
        cell0001.png
        ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.FLIC.loader

tensorbay.opendataset.FLIC.loader.FLIC(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the FLIC dataset.

The folder structure should be like:

<path>
    exampls.mat
    images/
        2-fast-2-furious-00003571.jpg
        ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.FSDD.loader

tensorbay.opendataset.FSDD.loader.FSDD(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Free Spoken Digit dataset.

The file structure should be like:

<path>
    recordings/
        0_george_0.wav
        0_george_1.wav
        ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.Flower.loader

tensorbay.opendataset.Flower.loader.Flower102(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the 102 Category Flower dataset.

The file structure should be like:

<path>
    jpg/
        image_00001.jpg
        ...
    imagelabels.mat
    setid.mat
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.Flower.loader.Flower17(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the 17 Category Flower dataset.

The dataset are 3 separate splits. The results in the paper are averaged over the 3 splits. We just use (trn1, val1, tst1) to split it.

The file structure should be like:

<path>
    jpg/
        image_0001.jpg
        ...
    datasplits.mat
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.HardHatWorkers.loader

tensorbay.opendataset.HardHatWorkers.loader.HardHatWorkers(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Hard Hat Workers dataset.

The file structure should be like:

<path>
    annotations/
        hard_hat_workers0.xml
        ...
    images/
        hard_hat_workers0.png
        ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.HeadPoseImage.loader

tensorbay.opendataset.HeadPoseImage.loader.HeadPoseImage(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Head Pose Image dataset.

The file structure should be like:

<path>
    Person01/
        person01100-90+0.jpg
        person01100-90+0.txt
        person01101-60-90.jpg
        person01101-60-90.txt
        ...
    Person02/
    Person03/
    ...
    Person15/
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.ImageEmotion.loader

tensorbay.opendataset.ImageEmotion.loader.ImageEmotionAbstract(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Image Emotion-abstract dataset.

The file structure should be like:

<path>
    ABSTRACT_groundTruth.csv
    abstract_xxxx.jpg
    ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.ImageEmotion.loader.ImageEmotionArtphoto(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Image Emotion-art Photo dataset.

The file structure should be like:

<path>
    <filename>.jpg
    ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.JHU_CROWD.loader

tensorbay.opendataset.JHU_CROWD.loader.JHU_CROWD(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the JHU-CROWD++ dataset.

The file structure should be like:

<path>
    train/
        images/
            0000.jpg
            ...
        gt/
            0000.txt
            ...
        image_labels.txt
    test/
    val/
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.KenyanFood.loader

tensorbay.opendataset.KenyanFood.loader.KenyanFoodOrNonfood(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Kenyan Food or Nonfood dataset.

The file structure should be like:

<path>
    images/
        food/
            236171947206673742.jpg
            ...
        nonfood/
            168223407.jpg
            ...
    data.csv
    split.py
    test.txt
    train.txt
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.KenyanFood.loader.KenyanFoodType(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Kenyan Food Type dataset.

The file structure should be like:

<path>
    test.csv
    test/
        bhaji/
            1611654056376059197.jpg
            ...
        chapati/
            1451497832469337023.jpg
            ...
        ...
    train/
        bhaji/
            190393222473009410.jpg
            ...
        chapati/
            1310641031297661755.jpg
            ...
    val/
        bhaji/
            1615408264598518873.jpg
            ...
        chapati/
            1553618479852020228.jpg
            ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.KylbergTexture.loader

tensorbay.opendataset.KylbergTexture.loader.KylbergTexture(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Kylberg Texture dataset.

The file structure should be like:

<path>
    originalPNG/
        <imagename>.png
        ...
    withoutRotateAll/
        <imagename>.png
        ...
    RotateAll/
        <imagename>.png
        ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.LISATrafficLight.loader

tensorbay.opendataset.LISATrafficLight.loader.LISATrafficLight(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the LISA Traffic Light dataset.

The file structure should be like:

<path>
    Annotations/Annotations/
        daySequence1/
        daySequence2/
        dayTrain/
            dayClip1/
            dayClip10/
            ...
            dayClip9/
        nightSequence1/
        nightSequence2/
        nightTrain/
            nightClip1/
            nightClip2/
            ...
            nightClip5/
    daySequence1/daySequence1/
    daySequence2/daySequence2/
    dayTrain/dayTrain/
        dayClip1/
        dayClip10/
        ...
        dayClip9/
    nightSequence1/nightSequence1/
    nightSequence2/nightSequence2/
    nightTrain/nightTrain/
        nightClip1/
        nightClip2/
        ...
        nightClip5/
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

Raises

FileStructureError – When frame number is discontinuous.

tensorbay.opendataset.LeedsSportsPose.loader

tensorbay.opendataset.LeedsSportsPose.loader.LeedsSportsPose(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Leeds Sports Pose dataset.

The folder structure should be like:

<path>
    joints.mat
    images/
        im0001.jpg
        im0002.jpg
        ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.NeolixOD.loader

tensorbay.opendataset.NeolixOD.loader.NeolixOD(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the Neolix OD dataset.

The file structure should be like:

<path>
    bins/
        <id>.bin
    labels/
        <id>.txt
    ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.Newsgroups20.loader

tensorbay.opendataset.Newsgroups20.loader.Newsgroups20(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the 20 Newsgroups dataset.

The folder structure should be like:

<path>
    20news-18828/
        alt.atheism/
            49960
            51060
            51119
            51120
            ...
        comp.graphics/
        comp.os.ms-windows.misc/
        comp.sys.ibm.pc.hardware/
        comp.sys.mac.hardware/
        comp.windows.x/
        misc.forsale/
        rec.autos/
        rec.motorcycles/
        rec.sport.baseball/
        rec.sport.hockey/
        sci.crypt/
        sci.electronics/
        sci.med/
        sci.space/
        soc.religion.christian/
        talk.politics.guns/
        talk.politics.mideast/
        talk.politics.misc/
        talk.religion.misc/
    20news-bydate-test/
    20news-bydate-train/
    20_newsgroups/
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.NightOwls.loader

tensorbay.opendataset.NightOwls.loader.NightOwls(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the NightOwls dataset.

The file structure should be like:

<path>
    nightowls_test/
        <image_name>.png
        ...
    nightowls_training/
        <image_name>.png
        ...
    nightowls_validation/
        <image_name>.png
        ...
    nightowls_training.json
    nightowls_validation.json
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.RP2K.loader

tensorbay.opendataset.RP2K.loader.RP2K(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the RP2K dataset.

The file structure of RP2K looks like:

<path>
    all/
        test/
            <catagory>/
                <image_name>.jpg
                ...
            ...
        train/
            <catagory>/
                <image_name>.jpg
                ...
            ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.THCHS30.loader

tensorbay.opendataset.THCHS30.loader.THCHS30(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the THCHS-30 dataset.

The file structure should be like:

<path>
    lm_word/
        lexicon.txt
    data/
        A11_0.wav.trn
        ...
    dev/
        A11_101.wav
        ...
    train/
    test/
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.THUCNews.loader

tensorbay.opendataset.THUCNews.loader.THUCNews(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the THUCNews dataset.

The folder structure should be like:

<path>
    <category>/
        0.txt
        1.txt
        2.txt
        3.txt
        ...
    <category>/
    ...
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.TLR.loader

tensorbay.opendataset.TLR.loader.TLR(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the TLR dataset.

The file structure should like:

<path>
    root_path/
        Lara3D_URbanSeq1_JPG/
            frame_011149.jpg
            frame_011150.jpg
            frame_<frame_index>.jpg
            ...
        Lara_UrbanSeq1_GroundTruth_cvml.xml
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.opendataset.WIDER_FACE.loader

tensorbay.opendataset.WIDER_FACE.loader.WIDER_FACE(path: str)tensorbay.dataset.dataset.Dataset[source]

Dataloader of the WIDER FACE dataset.

The file structure should be like:

<path>
    WIDER_train/
        images/
            0--Parade/
                0_Parade_marchingband_1_100.jpg
                0_Parade_marchingband_1_1015.jpg
                0_Parade_marchingband_1_1030.jpg
                ...
            1--Handshaking/
            ...
            59--people--driving--car/
            61--Street_Battle/
    WIDER_val/
        ...
    WIDER_test/
        ...
    wider_face_split/
        wider_face_train_bbx_gt.txt
        wider_face_val_bbx_gt.txt
Parameters

path – The root directory of the dataset.

Returns

Loaded Dataset instance.

tensorbay.sensor

tensorbay.sensor.intrinsics

CameraMatrix, DistortionCoefficients and CameraIntrinsics.

CameraMatrix represents camera matrix. It describes the mapping of a pinhole camera model from 3D points in the world to 2D points in an image.

DistortionCoefficients represents camera distortion coefficients. It is the deviation from rectilinear projection including radial distortion and tangential distortion.

CameraIntrinsics represents camera intrinsics including camera matrix and distortion coeffecients. It describes the mapping of the scene in front of the camera to the pixels in the final image.

CameraMatrix, DistortionCoefficients and CameraIntrinsics class can all be initialized by __init__() or loads() method.

class tensorbay.sensor.intrinsics.CameraIntrinsics(fx: Optional[float] = None, fy: Optional[float] = None, cx: Optional[float] = None, cy: Optional[float] = None, skew: float = 0, *, camera_matrix: Optional[Union[Sequence[Sequence[float]], numpy.ndarray]] = None, **kwargs: float)[source]

Bases: tensorbay.utility.repr.ReprMixin

CameraIntrinsics represents camera intrinsics.

Camera intrinsic parameters including camera matrix and distortion coeffecients. They describe the mapping of the scene in front of the camera to the pixels in the final image.

Parameters
  • fx – The x axis focal length expressed in pixels.

  • fy – The y axis focal length expressed in pixels.

  • cx – The x coordinate of the so called principal point that should be in the center of the image.

  • cy – The y coordinate of the so called principal point that should be in the center of the image.

  • skew – It causes shear distortion in the projected image.

  • camera_matrix – A 3x3 Sequence of the camera matrix.

  • **kwargs – Float values to initialize DistortionCoefficients.

camera_matrix

A 3x3 Sequence of the camera matrix.

distortion_coefficients

It is the deviation from rectilinear projection. It includes

radial distortion and tangential distortion.

Examples

>>> matrix = [[1, 3, 3],
...           [0, 2, 4],
...           [0, 0, 1]]

Initialization Method 1: Init from 3x3 sequence array.

>>> camera_intrinsics = CameraIntrinsics(camera_matrix=matrix, p1=5, k1=6)
>>> camera_intrinsics
CameraIntrinsics(
    (camera_matrix): CameraMatrix(
            (fx): 1,
            (fy): 2,
            (cx): 3,
            (cy): 4,
            (skew): 3
        ),
    (distortion_coefficients): DistortionCoefficients(
            (p1): 5,
            (k1): 6
        )
)

Initialization Method 2: Init from camera calibration parameters, skew is optional.

>>> camera_intrinsics = CameraIntrinsics(
...     fx=1,
...     fy=2,
...     cx=3,
...     cy=4,
...     p1=5,
...     k1=6,
...     skew=3
... )
>>> camera_intrinsics
CameraIntrinsics(
    (camera_matrix): CameraMatrix(
        (fx): 1,
        (fy): 2,
        (cx): 3,
        (cy): 4,
        (skew): 3
    ),
    (distortion_coefficients): DistortionCoefficients(
        (p1): 5,
        (k1): 6
    )
)
dumps()Dict[str, Dict[str, float]][source]

Dumps the camera intrinsics into a dict.

Returns

A dict containing camera intrinsics.

Examples

>>> camera_intrinsics.dumps()
{'cameraMatrix': {'fx': 1, 'fy': 2, 'cx': 3, 'cy': 4, 'skew': 3},
'distortionCoefficients': {'p1': 5, 'k1': 6}}
classmethod loads(contents: Dict[str, Dict[str, float]])tensorbay.sensor.intrinsics._T[source]

Loads CameraIntrinsics from a dict containing the information.

Parameters

contents – A dict containig camera matrix and distortion coefficients.

Returns

A CameraIntrinsics instance containing information from the contents dict.

Examples

>>> contents = {
...     "cameraMatrix": {
...         "fx": 1,
...         "fy": 2,
...         "cx": 3,
...         "cy": 4,
...     },
...     "distortionCoefficients": {
...         "p1": 1,
...         "p2": 2,
...         "k1": 3,
...         "k2": 4
...     },
... }
>>> camera_intrinsics = CameraIntrinsics.loads(contents)
>>> camera_intrinsics
CameraIntrinsics(
    (camera_matrix): CameraMatrix(
        (fx): 1,
        (fy): 2,
        (cx): 3,
        (cy): 4,
        (skew): 0
    ),
    (distortion_coefficients): DistortionCoefficients(
        (p1): 1,
        (p2): 2,
        (k1): 3,
        (k2): 4
    )
)
project(point: Sequence[float], is_fisheye: bool = False)tensorbay.geometry.vector.Vector2D[source]

Project a point to the pixel coordinates.

If distortion coefficients are provided, distort the point before projection.

Parameters
  • point – A Sequence containing coordinates of the point to be projected.

  • is_fisheye – Whether the sensor is fisheye camera, default is False.

Returns

The coordinates on the pixel plane where the point is projected to.

Examples

Project a point with 2 dimensions.

>>> camera_intrinsics.project((1, 2))
Vector2D(137.0, 510.0)

Project a point with 3 dimensions.

>>> camera_intrinsics.project((1, 2, 3))
Vector2D(6.300411522633745, 13.868312757201647)

Project a point with 2 dimensions, fisheye is True

>>> camera_intrinsics.project((1, 2), is_fisheye=True)
Vector2D(9.158401093771875, 28.633604375087504)
set_camera_matrix(fx: Optional[float] = None, fy: Optional[float] = None, cx: Optional[float] = None, cy: Optional[float] = None, skew: float = 0, *, matrix: Optional[Union[Sequence[Sequence[float]], numpy.ndarray]] = None)None[source]

Set camera matrix of the camera intrinsics.

Parameters
  • fx – The x axis focal length expressed in pixels.

  • fy – The y axis focal length expressed in pixels.

  • cx – The x coordinate of the so called principal point that should be in the center of the image.

  • cy – The y coordinate of the so called principal point that should be in the center of the image.

  • skew – It causes shear distortion in the projected image.

  • matrix – Camera matrix in 3x3 sequence.

Examples

>>> camera_intrinsics.set_camera_matrix(fx=11, fy=12, cx=13, cy=14, skew=15)
>>> camera_intrinsics
CameraIntrinsics(
    (camera_matrix): CameraMatrix(
        (fx): 11,
        (fy): 12,
        (cx): 13,
        (cy): 14,
        (skew): 15
    ),
    (distortion_coefficients): DistortionCoefficients(
        (p1): 1,
        (p2): 2,
        (k1): 3,
        (k2): 4
    )
)
set_distortion_coefficients(**kwargs: float)None[source]

Set distortion coefficients of the camera intrinsics.

Parameters

**kwargs – Contains p1, p2, …, k1, k2, …

Examples

>>> camera_intrinsics.set_distortion_coefficients(p1=11, p2=12, k1=13, k2=14)
>>> camera_intrinsics
CameraIntrinsics(
    (camera_matrix): CameraMatrix(
        (fx): 11,
        (fy): 12,
        (cx): 13,
        (cy): 14,
        (skew): 15
    ),
    (distortion_coefficients): DistortionCoefficients(
        (p1): 11,
        (p2): 12,
        (k1): 13,
        (k2): 14
    )
)
class tensorbay.sensor.intrinsics.CameraMatrix(fx: Optional[float] = None, fy: Optional[float] = None, cx: Optional[float] = None, cy: Optional[float] = None, skew: float = 0, *, matrix: Optional[Union[Sequence[Sequence[float]], numpy.ndarray]] = None)[source]

Bases: tensorbay.utility.repr.ReprMixin

CameraMatrix represents camera matrix.

Camera matrix describes the mapping of a pinhole camera model from 3D points in the world to 2D points in an image.

Parameters
  • fx – The x axis focal length expressed in pixels.

  • fy – The y axis focal length expressed in pixels.

  • cx – The x coordinate of the so called principal point that should be in the center of the image.

  • cy – The y coordinate of the so called principal point that should be in the center of the image.

  • skew – It causes shear distortion in the projected image.

  • matrix – A 3x3 Sequence of camera matrix.

fx

The x axis focal length expressed in pixels.

fy

The y axis focal length expressed in pixels.

cx

The x coordinate of the so called principal point that should be in the center of the image.

cy

The y coordinate of the so called principal point that should be in the center of the image.

skew

It causes shear distortion in the projected image.

Raises

TypeError – When only keyword arguments with incorrect keys are provided, or when no arguments are provided.

Examples

>>> matrix = [[1, 3, 3],
...           [0, 2, 4],
...           [0, 0, 1]]

Initialazation Method 1: Init from 3x3 sequence array.

>>> camera_matrix = CameraMatrix(matrix=matrix)
>>> camera_matrix
CameraMatrix(
    (fx): 1,
    (fy): 2,
    (cx): 3,
    (cy): 4,
    (skew): 3
)

Initialazation Method 2: Init from camera calibration parameters, skew is optional.

>>> camera_matrix = CameraMatrix(fx=1, fy=2, cx=3, cy=4, skew=3)
>>> camera_matrix
CameraMatrix(
    (fx): 1,
    (fy): 2,
    (cx): 3,
    (cy): 4,
    (skew): 3
)
as_matrix()numpy.ndarray[source]

Return the camera matrix as a 3x3 numpy array.

Returns

A 3x3 numpy array representing the camera matrix.

Examples

>>> numpy_array = camera_matrix.as_matrix()
>>> numpy_array
array([[1., 3., 3.],
       [0., 4., 4.],
       [0., 0., 1.]])
dumps()Dict[str, float][source]

Dumps the camera matrix into a dict.

Returns

A dict containing the information of the camera matrix.

Examples

>>> camera_matrix.dumps()
{'fx': 1, 'fy': 2, 'cx': 3, 'cy': 4, 'skew': 3}
classmethod loads(contents: Dict[str, float])tensorbay.sensor.intrinsics._T[source]

Loads CameraMatrix from a dict containing the information of the camera matrix.

Parameters

contents – A dict containing the information of the camera matrix.

Returns

A CameraMatrix instance contains the information from the contents dict.

Examples

>>> contents = {
...     "fx": 2,
...     "fy": 6,
...     "cx": 4,
...     "cy": 7,
...     "skew": 3
... }
>>> camera_matrix = CameraMatrix.loads(contents)
>>> camera_matrix
CameraMatrix(
    (fx): 2,
    (fy): 6,
    (cx): 4,
    (cy): 7,
    (skew): 3
)
project(point: Sequence[float])tensorbay.geometry.vector.Vector2D[source]

Project a point to the pixel coordinates.

Parameters

point – A Sequence containing the coordinates of the point to be projected.

Returns

The pixel coordinates.

Raises

TypeError – When the dimension of the input point is neither two nor three.

Examples

Project a point in 2 dimensions

>>> camera_matrix.project([1, 2])
Vector2D(12, 19)

Project a point in 3 dimensions

>>> camera_matrix.project([1, 2, 4])
Vector2D(6.0, 10.0)
class tensorbay.sensor.intrinsics.DistortionCoefficients(**kwargs: float)[source]

Bases: tensorbay.utility.repr.ReprMixin

DistortionCoefficients represents camera distortion coefficients.

Distortion is the deviation from rectilinear projection including radial distortion and tangential distortion.

Parameters

**kwargs – Float values with keys: k1, k2, … and p1, p2, …

Raises

TypeError – When tangential and radial distortion is not provided to initialize class.

Examples

>>> distortion_coefficients = DistortionCoefficients(p1=1, p2=2, k1=3, k2=4)
>>> distortion_coefficients
DistortionCoefficients(
    (p1): 1,
    (p2): 2,
    (k1): 3,
    (k2): 4
)
distort(point: Sequence[float], is_fisheye: bool = False)tensorbay.geometry.vector.Vector2D[source]

Add distortion to a point.

Parameters
  • point – A Sequence containing the coordinates of the point to be distorted.

  • is_fisheye – Whether the sensor is fisheye camera, default is False.

Raises

TypeError – When the dimension of the input point is neither two nor three.

Returns

Distorted 2d point.

Examples

Distort a point with 2 dimensions

>>> distortion_coefficients.distort((1.0, 2.0))
Vector2D(134.0, 253.0)

Distort a point with 3 dimensions

>>> distortion_coefficients.distort((1.0, 2.0, 3.0))
Vector2D(3.3004115226337447, 4.934156378600823)

Distort a point with 2 dimensions, fisheye is True

>>> distortion_coefficients.distort((1.0, 2.0), is_fisheye=True)
Vector2D(6.158401093771876, 12.316802187543752)
dumps()Dict[str, float][source]

Dumps the distortion coefficients into a dict.

Returns

A dict containing the information of distortion coefficients.

Examples

>>> distortion_coefficients.dumps()
{'p1': 1, 'p2': 2, 'k1': 3, 'k2': 4}
classmethod loads(contents: Dict[str, float])tensorbay.sensor.intrinsics._T[source]

Loads DistortionCoefficients from a dict containing the information.

Parameters

contents – A dict containig distortion coefficients of a camera.

Returns

A DistortionCoefficients instance containing information from the contents dict.

Examples

>>> contents = {
...     "p1": 1,
...     "p2": 2,
...     "k1": 3,
...     "k2": 4
... }
>>> distortion_coefficients = DistortionCoefficients.loads(contents)
>>> distortion_coefficients
DistortionCoefficients(
    (p1): 1,
    (p2): 2,
    (k1): 3,
    (k2): 4
)

tensorbay.sensor.sensor

SensorType, Sensor, Lidar, Radar, Camera, FisheyeCamera and Sensors.

SensorType is an enumeration type. It includes ‘LIDAR’, ‘RADAR’, ‘CAMERA’ and ‘FISHEYE_CAMERA’.

Sensor defines the concept of sensor. It includes name, description, translation and rotation.

A Sensor class can be initialized by Sensor.__init__() or Sensor.loads() method.

Lidar defines the concept of lidar. It is a kind of sensor for measuring distances by illuminating the target with laser light and measuring the reflection.

Radar defines the concept of radar. It is a detection system that uses radio waves to determine the range, angle, or velocity of objects.

Camera defines the concept of camera. It includes name, description, translation, rotation, cameraMatrix and distortionCoefficients.

FisheyeCamera defines the concept of fisheye camera. It is an ultra wide-angle lens that produces strong visual distortion intended to create a wide panoramic or hemispherical image.

Sensors represent all the sensors in a FusionSegment.

class tensorbay.sensor.sensor.Camera(name: str)[source]

Bases: tensorbay.utility.name.NameMixin, tensorbay.utility.type.TypeMixin[tensorbay.sensor.sensor.SensorType]

Camera defines the concept of camera.

Camera includes name, description, translation, rotation, cameraMatrix and distortionCoefficients.

extrinsics

The translation and rotation of the camera.

Type

tensorbay.geometry.transform.Transform3D

intrinsics

The camera matrix and distortion coefficients of the camera.

Type

tensorbay.sensor.intrinsics.CameraIntrinsics

Examples

>>> from tensorbay.geometry import Vector3D
>>> from numpy import quaternion
>>> camera = Camera('Camera1')
>>> translation = Vector3D(1, 2, 3)
>>> rotation = quaternion(1, 2, 3, 4)
>>> camera.set_extrinsics(translation=translation, rotation=rotation)
>>> camera.set_camera_matrix(fx=1.1, fy=1.1, cx=1.1, cy=1.1)
>>> camera.set_distortion_coefficients(p1=1.2, p2=1.2, k1=1.2, k2=1.2)
>>> camera
Camera("Camera1")(
    (extrinsics): Transform3D(
        (translation): Vector3D(1, 2, 3),
        (rotation): quaternion(1, 2, 3, 4)
    ),
    (intrinsics): CameraIntrinsics(
        (camera_matrix): CameraMatrix(
            (fx): 1.1,
            (fy): 1.1,
            (cx): 1.1,
            (cy): 1.1,
            (skew): 0
        ),
        (distortion_coefficients): DistortionCoefficients(
            (p1): 1.2,
            (p2): 1.2,
            (k1): 1.2,
            (k2): 1.2
        )
    )
)
dumps()Dict[str, Any][source]

Dumps the camera into a dict.

Returns

A dict containing name, description, extrinsics and intrinsics.

Examples

>>> camera.dumps()
{
    'name': 'Camera1',
    'type': 'CAMERA',
    'extrinsics': {
        'translation': {'x': 1, 'y': 2, 'z': 3},
        'rotation': {'w': 1.0, 'x': 2.0, 'y': 3.0, 'z': 4.0}
    },
    'intrinsics': {
        'cameraMatrix': {'fx': 1, 'fy': 1, 'cx': 1, 'cy': 1, 'skew': 0},
        'distortionCoefficients': {'p1': 1, 'p2': 1, 'k1': 1, 'k2': 1}
    }
}
classmethod loads(contents: Dict[str, Any])tensorbay.sensor.sensor._T[source]

Loads a Camera from a dict containing the camera information.

Parameters

contents – A dict containing name, description, extrinsics and intrinsics.

Returns

A Camera instance containing information from contents dict.

Examples

>>> contents = {
...     "name": "Camera1",
...     "type": "CAMERA",
...     "extrinsics": {
...           "translation": {"x": 1, "y": 2, "z": 3},
...           "rotation": {"w": 1.0, "x": 2.0, "y": 3.0, "z": 4.0},
...     },
...     "intrinsics": {
...         "cameraMatrix": {"fx": 1, "fy": 1, "cx": 1, "cy": 1, "skew": 0},
...         "distortionCoefficients": {"p1": 1, "p2": 1, "k1": 1, "k2": 1},
...     },
... }
>>> Camera.loads(contents)
Camera("Camera1")(
        (extrinsics): Transform3D(
            (translation): Vector3D(1, 2, 3),
            (rotation): quaternion(1, 2, 3, 4)
        ),
        (intrinsics): CameraIntrinsics(
            (camera_matrix): CameraMatrix(
                (fx): 1,
                (fy): 1,
                (cx): 1,
                (cy): 1,
                (skew): 0
            ),
            (distortion_coefficients): DistortionCoefficients(
                (p1): 1,
                (p2): 1,
                (k1): 1,
                (k2): 1
            )
        )
    )
set_camera_matrix(fx: Optional[float] = None, fy: Optional[float] = None, cx: Optional[float] = None, cy: Optional[float] = None, skew: float = 0, *, matrix: Optional[Union[Sequence[Sequence[float]], numpy.ndarray]] = None)None[source]

Set camera matrix.

Parameters
  • fx – The x axis focal length expressed in pixels.

  • fy – The y axis focal length expressed in pixels.

  • cx – The x coordinate of the so called principal point that should be in the center of the image.

  • cy – The y coordinate of the so called principal point that should be in the center of the image.

  • skew – It causes shear distortion in the projected image.

  • matrix – Camera matrix in 3x3 sequence.

Examples

>>> camera.set_camera_matrix(fx=1.1, fy=2.2, cx=3.3, cy=4.4)
>>> camera
Camera("Camera1")(
    ...
    (intrinsics): CameraIntrinsics(
        (camera_matrix): CameraMatrix(
            (fx): 1.1,
            (fy): 2.2,
            (cx): 3.3,
            (cy): 4.4,
            (skew): 0
        ),
        ...
        )
    )
)
set_distortion_coefficients(**kwargs: float)None[source]

Set distortion coefficients.

Parameters

**kwargs – Float values to set distortion coefficients.

Raises

ValueError – When intrinsics is not set yet.

Examples

>>> camera.set_distortion_coefficients(p1=1.1, p2=2.2, k1=3.3, k2=4.4)
>>> camera
Camera("Camera1")(
    ...
    (intrinsics): CameraIntrinsics(
        ...
        (distortion_coefficients): DistortionCoefficients(
            (p1): 1.1,
            (p2): 2.2,
            (k1): 3.3,
            (k2): 4.4
        )
    )
)
class tensorbay.sensor.sensor.FisheyeCamera(name: str)[source]

Bases: tensorbay.utility.name.NameMixin, tensorbay.utility.type.TypeMixin[tensorbay.sensor.sensor.SensorType]

FisheyeCamera defines the concept of fisheye camera.

Fisheye camera is an ultra wide-angle lens that produces strong visual distortion intended to create a wide panoramic or hemispherical image.

Examples

>>> fisheye_camera = FisheyeCamera("FisheyeCamera1")
>>> fisheye_camera.set_extrinsics(translation=translation, rotation=rotation)
>>> fisheye_camera
FisheyeCamera("FisheyeCamera1")(
    (extrinsics): Transform3D(
        (translation): Vector3D(1, 2, 3),
        (rotation): quaternion(1, 2, 3, 4)
    )
)
class tensorbay.sensor.sensor.Lidar(name: str)[source]

Bases: tensorbay.utility.name.NameMixin, tensorbay.utility.type.TypeMixin[tensorbay.sensor.sensor.SensorType]

Lidar defines the concept of lidar.

Lidar is a kind of sensor for measuring distances by illuminating the target with laser light and measuring the reflection.

Examples

>>> lidar = Lidar("Lidar1")
>>> lidar.set_extrinsics(translation=translation, rotation=rotation)
>>> lidar
Lidar("Lidar1")(
    (extrinsics): Transform3D(
        (translation): Vector3D(1, 2, 3),
        (rotation): quaternion(1, 2, 3, 4)
    )
)
class tensorbay.sensor.sensor.Radar(name: str)[source]

Bases: tensorbay.utility.name.NameMixin, tensorbay.utility.type.TypeMixin[tensorbay.sensor.sensor.SensorType]

Radar defines the concept of radar.

Radar is a detection system that uses radio waves to determine the range, angle, or velocity of objects.

Examples

>>> radar = Radar("Radar1")
>>> radar.set_extrinsics(translation=translation, rotation=rotation)
>>> radar
Radar("Radar1")(
    (extrinsics): Transform3D(
        (translation): Vector3D(1, 2, 3),
        (rotation): quaternion(1, 2, 3, 4)
    )
)
class tensorbay.sensor.sensor.Sensor(name: str)[source]

Bases: tensorbay.utility.name.NameMixin, tensorbay.utility.type.TypeMixin[tensorbay.sensor.sensor.SensorType]

Sensor defines the concept of sensor.

Sensor includes name, description, translation and rotation.

Parameters

nameSensor’s name.

Raises

TypeError – Can not instantiate abstract class Sensor.

extrinsics

The translation and rotation of the sensor.

Type

tensorbay.geometry.transform.Transform3D

dumps()Dict[str, Any][source]

Dumps the sensor into a dict.

Returns

A dict containing the information of the sensor.

Examples

>>> # sensor is the object initialized from self.loads() method.
>>> sensor.dumps()
{
    'name': 'Lidar1',
    'type': 'LIDAR',
    'extrinsics': {'translation': {'x': 1.1, 'y': 2.2, 'z': 3.3},
    'rotation': {'w': 1.1, 'x': 2.2, 'y': 3.3, 'z': 4.4}
    }
}
static loads(contents: Dict[str, Any])_Type[source]

Loads a Sensor from a dict containing the sensor information.

Parameters

contents – A dict containing name, description and sensor extrinsics.

Returns

A Sensor instance containing the information from the contents dict.

Examples

>>> contents = {
...     "name": "Lidar1",
...     "type": "LIDAR",
...     "extrinsics": {
...         "translation": {"x": 1.1, "y": 2.2, "z": 3.3},
...         "rotation": {"w": 1.1, "x": 2.2, "y": 3.3, "z": 4.4},
...     },
... }
>>> sensor = Sensor.loads(contents)
>>> sensor
Lidar("Lidar1")(
    (extrinsics): Transform3D(
        (translation): Vector3D(1.1, 2.2, 3.3),
        (rotation): quaternion(1.1, 2.2, 3.3, 4.4)
    )
)
set_extrinsics(translation: Iterable[float] = (0, 0, 0), rotation: Union[Iterable[float], quaternion.quaternion] = (1, 0, 0, 0), *, matrix: Optional[Union[Sequence[Sequence[float]], numpy.ndarray]] = None)None[source]

Set the extrinsics of the sensor.

Parameters
  • translation – Translation parameters.

  • rotation – Rotation in a sequence of [w, x, y, z] or numpy quaternion.

  • matrix – A 3x4 or 4x4 transform matrix.

Examples

>>> sensor.set_extrinsics(translation=translation, rotation=rotation)
>>> sensor
Lidar("Lidar1")(
    (extrinsics): Transform3D(
        (translation): Vector3D(1, 2, 3),
        (rotation): quaternion(1, 2, 3, 4)
    )
)
set_rotation(rotation: Union[Iterable[float], quaternion.quaternion])None[source]

Set the rotation of the sensor.

Parameters

rotation – Rotation in a sequence of [w, x, y, z] or numpy quaternion.

Examples

>>> sensor.set_rotation([2, 3, 4, 5])
>>> sensor
Lidar("Lidar1")(
    (extrinsics): Transform3D(
        ...
        (rotation): quaternion(2, 3, 4, 5)
    )
)
set_translation(x: float, y: float, z: float)None[source]

Set the translation of the sensor.

Parameters
  • x – The x coordinate of the translation.

  • y – The y coordinate of the translation.

  • z – The z coordinate of the translation.

Examples

>>> sensor.set_translation(x=2, y=3, z=4)
>>> sensor
Lidar("Lidar1")(
    (extrinsics): Transform3D(
        (translation): Vector3D(2, 3, 4),
        ...
    )
)
class tensorbay.sensor.sensor.SensorType(value)[source]

Bases: tensorbay.utility.type.TypeEnum

SensorType is an enumeration type.

It includes ‘LIDAR’, ‘RADAR’, ‘CAMERA’ and ‘FISHEYE_CAMERA’.

Examples

>>> SensorType.CAMERA
<SensorType.CAMERA: 'CAMERA'>
>>> SensorType["CAMERA"]
<SensorType.CAMERA: 'CAMERA'>
>>> SensorType.CAMERA.name
'CAMERA'
>>> SensorType.CAMERA.value
'CAMERA'
class tensorbay.sensor.sensor.Sensors(data: Optional[Mapping[str, tensorbay.utility.name._T]] = None)[source]

Bases: tensorbay.utility.name.NameSortedDict[Union[Radar, Lidar, FisheyeCamera, Camera]]

This class represents all sensors in a FusionSegment.

dumps()List[Dict[str, Any]][source]

Return the information of all the sensors.

Returns

A list of dict containing the information of all sensors:

[
    {
        "name": <str>
        "type": <str>
        "extrinsics": {
            "translation": {
                "x": <float>
                "y": <float>
                "z": <float>
            },
            "rotation": {
                "w": <float>
                "x": <float>
                "y": <float>
                "z": <float>
            },
        },
        "intrinsics": {           --- only for cameras
            "cameraMatrix": {
                "fx": <float>
                "fy": <float>
                "cx": <float>
                "cy": <float>
                "skew": <float>
            }
            "distortionCoefficients": {
                "k1": <float>
                "k2": <float>
                "p1": <float>
                "p2": <float>
                ...
            }
        },
        "desctiption": <str>
    },
    ...
]

classmethod loads(contents: List[Dict[str, Any]])tensorbay.sensor.sensor._T[source]

Loads a Sensors instance from the given contents.

Parameters

contents

A list of dict containing the sensors information in a fusion segment, whose format should be like:

[
    {
        "name": <str>
        "type": <str>
        "extrinsics": {
            "translation": {
                "x": <float>
                "y": <float>
                "z": <float>
            },
            "rotation": {
                "w": <float>
                "x": <float>
                "y": <float>
                "z": <float>
            },
        },
        "intrinsics": {           --- only for cameras
            "cameraMatrix": {
                "fx": <float>
                "fy": <float>
                "cx": <float>
                "cy": <float>
                "skew": <float>
            }
            "distortionCoefficients": {
                "k1": <float>
                "k2": <float>
                "p1": <float>
                "p2": <float>
                ...
            }
        },
        "desctiption": <str>
    },
    ...
]

Returns

The loaded Sensors instance.

tensorbay.utility

tensorbay.utility.common

Common_loads method, EqMixin class.

common_loads() is a common method for loading an object from a dict or a list of dict.

EqMixin is a mixin class to support __eq__() method, which compares all the instance variables.

class tensorbay.utility.common.Deprecated(*, since: str, removed_in: Optional[str] = None, substitute: Union[None, str, Callable[[...], Any]] = None)[source]

Bases: object

A decorator for deprecated functions.

Parameters
  • since – The version the function is deprecated.

  • remove_in – The version the function will be removed in.

  • substitute – The substitute function.

class tensorbay.utility.common.EqMixin[source]

Bases: object

A mixin class to support __eq__() method.

The __eq__() method defined here compares all the instance variables.

class tensorbay.utility.common.KwargsDeprecated(keywords: Tuple[str, ...], *, since: str, removed_in: Optional[str] = None, substitute: Optional[str] = None)[source]

Bases: object

A decorator for the function which has deprecated keyword arguments.

Parameters
  • keywords – The keyword arguments which need to be deprecated.

  • since – The version the keyword arguments are deprecated.

  • remove_in – The version the keyword arguments will be removed in.

  • substitute – The substitute usage.

tensorbay.utility.common.common_loads(object_class: Type[tensorbay.utility.common._T], contents: Any)tensorbay.utility.common._T[source]

A common method for loading an object from a dict or a list of dict.

Parameters
  • object_class – The class of the object to be loaded.

  • contents – The information of the object in a dict or a list of dict.

Returns

The loaded object.

tensorbay.utility.name

NameMixin, NameSortedDict, NameSortedList and NameOrderedDict.

NameMixin is a mixin class for instance which has immutable name and mutable description.

NameSortedDict is a sorted mapping class which contains NameMixin. The corrsponding key is the ‘name’ of NameMixin.

NameSortedList is a sorted sequence class which contains NameMixin. It is maintained in sorted order according to the ‘name’ of NameMixin.

NameOrderedDict is an ordered mapping class which contains NameMixin. The corrsponding key is the ‘name’ of NameMixin.

class tensorbay.utility.name.NameMixin(name: str, description: str = '')[source]

Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqMixin

A mixin class for instance which has immutable name and mutable description.

Parameters
  • name – Name of the class.

  • description – Description of the class.

name

Name of the class.

classmethod loads(contents: Dict[str, str])tensorbay.utility.name._P[source]

Loads a NameMixin from a dict containing the information of the NameMixin.

Parameters

contents

A dict containing the information of the NameMixin:

{
    "name": <str>
    "description": <str>
}

Returns

A NameMixin instance containing the information from the contents dict.

class tensorbay.utility.name.NameOrderedDict[source]

Bases: tensorbay.utility.user.UserMapping[str, tensorbay.utility.name._T]

Name ordered dict is an ordered mapping which contains NameMixin.

The corrsponding key is the ‘name’ of NameMixin.

append(value: tensorbay.utility.name._T)None[source]

Store element in ordered dict.

Parameters

valueNameMixin instance.

class tensorbay.utility.name.NameSortedDict(data: Optional[Mapping[str, tensorbay.utility.name._T]] = None)[source]

Bases: tensorbay.utility.user.UserMapping[str, tensorbay.utility.name._T]

Name sorted dict keys are maintained in sorted order.

Name sorted dict is a sorted mapping which contains NameMixin. The corrsponding key is the ‘name’ of NameMixin.

Parameters

data – A mapping from str to NameMixin which needs to be transferred to NameSortedDict.

add(value: tensorbay.utility.name._T)None[source]

Store element in name sorted dict.

Parameters

valueNameMixin instance.

class tensorbay.utility.name.NameSortedList[source]

Bases: Sequence[tensorbay.utility.name._T]

Name sorted list is a sorted sequence which contains NameMixin.

It is maintained in sorted order according to the ‘name’ of NameMixin.

add(value: tensorbay.utility.name._T)None[source]

Store element in name sorted list.

Parameters

valueNameMixin instance.

get_from_name(name: str)tensorbay.utility.name._T[source]

Get element in name sorted list from name of NameMixin.

Parameters

name – Name of NameMixin instance.

Returns

The element to be get.

tensorbay.utility.repr

ReprType and ReprMixin.

ReprType is an enumeration type, which defines the repr strategy type and includes ‘INSTANCE’, ‘SEQUENCE’, ‘MAPPING’.

ReprMixin provides customized repr config and method.

class tensorbay.utility.repr.ReprMixin[source]

Bases: object

ReprMixin provides customized repr config and method.

class tensorbay.utility.repr.ReprType(value)[source]

Bases: enum.Enum

ReprType is an enumeration type.

It defines the repr strategy type and includes ‘INSTANCE’, ‘SEQUENCE’ and ‘MAPPING’.

tensorbay.utility.tbrn

TensorBay Resource Name (TBRN) related classes.

TBRNType is an enumeration type, which has 7 types: ‘DATASET’, ‘SEGMENT’, ‘FRAME’, ‘SEGMENT_SENSOR’, ‘FRAME_SENSOR’, ‘NORMAL_FILE’ and ‘FUSION_FILE’.

TBRN is a TensorBay Resource Name(TBRN) parser and generator.

class tensorbay.utility.tbrn.TBRN(dataset_name: Optional[str] = None, segment_name: Optional[str] = None, frame_index: Optional[int] = None, sensor_name: Optional[str] = None, *, remote_path: Optional[str] = None, tbrn: Optional[str] = None)[source]

Bases: object

TBRN is a TensorBay Resource Name(TBRN) parser and generator.

Use as a generator:

>>> info = TBRN("VOC2010", "train", remote_path="2012_004330.jpg")
>>> info.type
<TBRNType.NORMAL_FILE: 5>
>>> info.get_tbrn()
'tb:VOC2010:train://2012_004330.jpg'
>>> print(info)
'tb:VOC2010:train://2012_004330.jpg'

Use as a parser:

>>> tbrn = "tb:VOC2010:train://2012_004330.jpg"
>>> info = TBRN(tbrn=tbrn)
>>> info.dataset
'VOC2010'
>>> info.segment_name
'train'
>>> info.remote_path
'2012_004330.jpg'
Parameters
  • dataset_name – Name of the dataset.

  • segment_name – Name of the segment.

  • frame_index – Index of the frame.

  • sensor_name – Name of the sensor.

  • remote_path – Object path of the file.

  • tbrn – Full TBRN string.

dataset_name

Name of the dataset.

segment_name

Name of the segment.

frame_index

Index of the frame.

sensor_name

Name of the sensor.

remote_path

Object path of the file.

type

The type of this TBRN.

Raises

TBRNError – The TBRN is invalid.

get_tbrn(frame_width: int = 0)str[source]

Generate the full TBRN string.

Parameters

frame_width – Add ‘0’ at the beginning of the frame_index, until it reaches the frame_width.

Returns

The full TBRN string.

class tensorbay.utility.tbrn.TBRNType(value)[source]

Bases: enum.Enum

TBRNType defines the type of a TBRN.

It has 7 types:

  1. TBRNType.DATASET:

    "tb:VOC2012"
    

which means the dataset “VOC2012”.

  1. TBRNType.SEGMENT:

    "tb:VOC2010:train"
    

which means the “train” segment of dataset “VOC2012”.

  1. TBRNType.FRAME:

    "tb:KITTI:test:10"
    

which means the 10th frame of the “test” segment in dataset “KITTI”.

  1. TBRNType.SEGMENT_SENSOR:

    "tb:KITTI:test::lidar"
    

which means the sensor “lidar” of the “test” segment in dataset “KITTI”.

  1. TBRNType.FRAME_SENSOR:

    "tb:KITTI:test:10:lidar"
    

which means the sensor “lidar” which belongs to the 10th frame of the “test” segment in dataset “KITTI”.

  1. TBRNType.NORMAL_FILE:

    "tb:VOC2012:train://2012_004330.jpg"
    

which means the file “2012_004330.jpg” of the “train” segment in normal dataset “VOC2012”.

  1. TBRNType.FUSION_FILE:

    "tb:KITTI:test:10:lidar://000024.bin"
    

which means the file “000024.bin” in fusion dataset “KITTI”, its segment, frame index and sensor is “test”, 10 and “lidar”.

tensorbay.utility.type

TypeEnum, TypeMixin, TypeRegister and SubcatalogTypeRegister.

TypeEnum is a superclass for enumeration classes that need to create a mapping with class.

TypeMixin is a superclass for the class which needs to link with TypeEnum.

TypeRegister is a decorator, which is used for registering TypeMixin to TypeEnum.

SubcatalogTypeRegister is a decorator, which is used for registering TypeMixin to TypeEnum.

class tensorbay.utility.type.SubcatalogTypeRegister(enum: tensorbay.utility.type.TypeEnum)[source]

Bases: object

SubcatalogTypeRegister is a decorator, which is used for registering TypeMixin to TypeEnum.

Parameters

enum – The corresponding TypeEnum of the TypeMixin.

class tensorbay.utility.type.TypeEnum(value)[source]

Bases: enum.Enum

TypeEnum is a superclass for enumeration classes that need to create a mapping with class.

The ‘type’ property is used for getting the corresponding class of the enumeration.

property type: Type[Any]

Get the corresponding class.

Returns

The corresponding class.

class tensorbay.utility.type.TypeMixin(*args, **kwds)[source]

Bases: Generic[tensorbay.utility.type._T]

TypeMixin is a superclass for the class which needs to link with TypeEnum.

It provides the class variable ‘TYPE’ to access the corresponding TypeEnum.

property enum: tensorbay.utility.type._T

Get the corresponding TypeEnum.

Returns

The corresponding TypeEnum.

class tensorbay.utility.type.TypeRegister(enum: tensorbay.utility.type.TypeEnum)[source]

Bases: object

TypeRegister is a decorator, which is used for registering TypeMixin to TypeEnum.

Parameters

enum – The corresponding TypeEnum of the TypeMixin.

tensorbay.utility.user

UserSequence, UserMutableSequence, UserMapping and UserMutableMapping.

UserSequence is a user-defined wrapper around sequence objects.

UserMutableSequence is a user-defined wrapper around mutable sequence objects.

UserMapping is a user-defined wrapper around mapping objects.

UserMutableMapping is a user-defined wrapper around mutable mapping objects.

class tensorbay.utility.user.UserMapping(*args, **kwds)[source]

Bases: Mapping[tensorbay.utility.user._K, tensorbay.utility.user._V], tensorbay.utility.repr.ReprMixin

UserMapping is a user-defined wrapper around mapping objects.

get(key: tensorbay.utility.user._K)Optional[tensorbay.utility.user._V][source]
get(key: tensorbay.utility.user._K, default: Union[tensorbay.utility.user._V, tensorbay.utility.user._T] = None)Union[tensorbay.utility.user._V, tensorbay.utility.user._T]

Return the value for the key if it is in the dict, else default.

Parameters
  • key – The key for dict, which can be any immutable type.

  • default – The value to be returned if key is not in the dict.

Returns

The value for the key if it is in the dict, else default.

items()AbstractSet[Tuple[tensorbay.utility.user._K, tensorbay.utility.user._V]][source]

Return a new view of the (key, value) pairs in dict.

Returns

The (key, value) pairs in dict.

keys()AbstractSet[tensorbay.utility.user._K][source]

Return a new view of the keys in dict.

Returns

The keys in dict.

values()ValuesView[tensorbay.utility.user._V][source]

Return a new view of the values in dict.

Returns

The values in dict.

class tensorbay.utility.user.UserMutableMapping(*args, **kwds)[source]

Bases: tensorbay.utility.user.UserMapping[tensorbay.utility.user._K, tensorbay.utility.user._V], MutableMapping[tensorbay.utility.user._K, tensorbay.utility.user._V]

UserMutableMapping is a user-defined wrapper around mutable mapping objects.

clear()None[source]

Remove all items from the mutable mapping object.

pop(key: tensorbay.utility.user._K)tensorbay.utility.user._V[source]
pop(key: tensorbay.utility.user._K, default: Union[tensorbay.utility.user._V, tensorbay.utility.user._T] = <object object>)Union[tensorbay.utility.user._V, tensorbay.utility.user._T]

Remove specified item and return the corresponding value.

Parameters
  • key – The key for dict, which can be any immutable type.

  • default – The value to be returned if the key is not in the dict and it is given.

Returns

Value to be removed from the mutable mapping object.

popitem()Tuple[tensorbay.utility.user._K, tensorbay.utility.user._V][source]

Remove and return a (key, value) pair as a tuple.

Pairs are returned in LIFO (last-in, first-out) order.

Returns

A (key, value) pair as a tuple.

setdefault(key: tensorbay.utility.user._K, default: Optional[tensorbay.utility.user._V] = None)tensorbay.utility.user._V[source]

Set the value of the item with the specified key.

If the key is in the dict, return the corresponding value. If not, insert the key with a value of default and return default.

Parameters
  • key – The key for dict, which can be any immutable type.

  • default – The value to be set if the key is not in the dict.

Returns

The value for key if it is in the dict, else default.

update(__m: Mapping[tensorbay.utility.user._K, tensorbay.utility.user._V], **kwargs: tensorbay.utility.user._V)None[source]
update(__m: Iterable[Tuple[tensorbay.utility.user._K, tensorbay.utility.user._V]], **kwargs: tensorbay.utility.user._V)None
update(**kwargs: tensorbay.utility.user._V)None

Update the dict.

Parameters
  • __m – A dict object, a generator object yielding a (key, value) pair or other object which has a .keys() method.

  • **kwargs – The value to be added to the mutable mapping.

class tensorbay.utility.user.UserMutableSequence(*args, **kwds)[source]

Bases: MutableSequence[tensorbay.utility.user._T], tensorbay.utility.repr.ReprMixin

UserMutableSequence is a user-defined wrapper around mutable sequence objects.

append(value: tensorbay.utility.user._T)None[source]

Append object to the end of the mutable sequence.

Parameters

value – Element to be appended to the mutable sequence.

clear()None[source]

Remove all items from the mutable sequence.

extend(values: Iterable[tensorbay.utility.user._T])None[source]

Extend mutable sequence by appending elements from the iterable.

Parameters

values – Elements to be Extended into the mutable sequence.

insert(index: int, value: tensorbay.utility.user._T)None[source]

Insert object before index.

Parameters
  • index – Position of the mutable sequence.

  • value – Element to be inserted into the mutable sequence.

pop(index: int = - 1)tensorbay.utility.user._T[source]

Return the item at index (default last) and remove it from the mutable sequence.

Parameters

index – Position of the mutable sequence.

Returns

Element to be removed from the mutable sequence.

remove(value: tensorbay.utility.user._T)None[source]

Remove the first occurrence of value.

Parameters

value – Element to be removed from the mutable sequence.

reverse()None[source]

Reverse the items of the mutable sequence in place.

class tensorbay.utility.user.UserSequence(*args, **kwds)[source]

Bases: Sequence[tensorbay.utility.user._T], tensorbay.utility.repr.ReprMixin

UserSequence is a user-defined wrapper around sequence objects.

count(value: tensorbay.utility.user._T)int[source]

Return the number of occurrences of value.

Parameters

value – The value to be counted the number of occurrences.

Returns

The number of occurrences of value.

index(value: tensorbay.utility.user._T, start: int = 0, stop: int = - 1)int[source]

Return the first index of the value.

Parameters
  • value – The value to be found.

  • start – The start index of the subsequence.

  • stop – The end index of the subsequence.

Returns

The First index of value.

tensorbay.exception

TensorBay cutoms exceptions.

The class hierarchy for TensorBay custom exceptions is:

+-- TensorBayException
    +-- ClientError
        +-- CommitStatusError
        +-- DatasetTypeError
        +-- FrameError
        +-- ResponseError
    +-- TBRNError
    +-- OpenDatasetError
        +-- NoFileError
        +-- FileStructureError
exception tensorbay.exception.ClientError[source]

Bases: tensorbay.exception.TensorBayException

This is the base class for custom exceptions in TensorBay client module.

exception tensorbay.exception.CommitStatusError(is_draft: bool)[source]

Bases: tensorbay.exception.ClientError

This class defines the exception for illegal commit status.

Parameters

is_draft – Whether the commit status is draft.

exception tensorbay.exception.DatasetTypeError(dataset_name: str, is_fusion: bool)[source]

Bases: tensorbay.exception.ClientError

This class defines the exception for incorrect type of the requested dataset.

Parameters
  • dataset_name – The name of the dataset whose requested type is wrong.

  • is_fusion – Whether the dataset is a fusion dataset.

exception tensorbay.exception.FileStructureError(message: str)[source]

Bases: tensorbay.exception.OpenDatasetError

This class defines the exception for incorrect file structure in the opendataset directory.

Parameters

message – The error message.

exception tensorbay.exception.FrameError(message: str)[source]

Bases: tensorbay.exception.ClientError

This class defines the exception for incorrect frame id.

Parameters

message – The error message.

exception tensorbay.exception.NoFileError(pattern: str)[source]

Bases: tensorbay.exception.OpenDatasetError

This class defines the exception for no matching file found in the opendataset directory.

Parameters

pattern – Glob pattern.

exception tensorbay.exception.OpenDatasetError[source]

Bases: tensorbay.exception.TensorBayException

This is the base class for custom exceptions in TensorBay opendataset module.

exception tensorbay.exception.ResponseError(response: requests.models.Response)[source]

Bases: tensorbay.exception.ClientError

This class defines the exception for post response error.

Parameters

response – The response of the request.

exception tensorbay.exception.TBRNError(message: str)[source]

Bases: tensorbay.exception.TensorBayException

This class defines the exception for invalid TBRN.

Parameters

message – The error message.

exception tensorbay.exception.TensorBayException[source]

Bases: Exception

This is the base class for TensorBay custom exceptions.