TensorBay

Graviti

Apr 25, 2021

QUICK START

1 What can TensorBay SDK do? 3
Python Module Index 201

Index 203

TensorBay

As an expert in unstructured data management, TensorBay provides services like data hosting, complex data version
management, online data visualization, and data collaboration. TensorBay’s unified authority management makes your
data sharing and collaborative use more secure.

This documentation describes SDK and CLI tools for using TensorBay.

QUICK START 1

https://www.graviti.cn/

TensorBay

2 QUICK START

CHAPTER
ONE

WHAT CAN TENSORBAY SDK DO?

TensorBay Python SDK is a python library to access TensorBay and manage your datasets. It provides:
* A pythonic way to access your TensorBay resources by TensorBay OpenAPI.
* An easy-to-use CLI tool gas (Graviti Al service) to communicate with TensorBay.

* A consistent dataset structure to read and write your datasets.

1.1 Getting started with TensorBay

1.1.1 Installation

To install TensorBay SDK and CLI by pip, run the following command:

’$ pip3 install tensorbay

To verify the SDK and CLI version, run the following command:

’$ gas —-version

1.1.2 Registration

Before using TensorBay SDK, please finish the following registration steps:
* Please visit Graviti Al Service(GAS) to sign up.

* Please visit this page to get an AccessKey.

Note: An AccessKey is needed to authenticate identity when using TensorBay via SDK or CLI.

https://docs.graviti.cn/dev-doc/tools/api-center
https://www.graviti.cn/tensorBay
https://gas.graviti.cn/tensorbay/developer

TensorBay

1.1.3 Usage

Authorize a Client Object

from tensorbay import GAS

gas = GAS ("<YOUR_ACCESSKEY>")

See this page for details about authenticating identity via CLI.

Create a Dataset

gas.create_dataset ("DatasetName")

List Dataset Names

dataset_list = list (gas.list_dataset_names{())

Upload Images to the Dataset

from tensorbay.dataset import Data, Dataset

Organize the local dataset by the "Dataset" class before uploading.
dataset = Dataset ("DatasetName™)

TensorBay uses "segment" to separate different parts in a dataset.
segment = dataset.create_segment ()

segment .append (Data ("0000001. jpg"))
segment .append (Data ("0000002.jpg"))

dataset_client = gas.upload_dataset (dataset)
TensorBay provides dataset version control feature, commit the uploaded data before_

—using it.
dataset_client.commit ("Initial commit™)

Read Images from the Dataset

from PIL import Image
from tensorbay.dataset import Segment

dataset_client = gas.get_dataset ("DatasetName")
segment = Segment ("", dataset_client)

for data in segment:
with data.open() as fp:
image = Image.open (fp)
width, height = image.size
image.show ()

4 Chapter 1. What can TensorBay SDK do?

TensorBay

Delete the Dataset

’ gas.delete_dataset ("DatasetName")

1.2 Examples

In this topic, we write a series of examples to help developers to use TensorBay(Table. 1.1).

Table 1.1: Examples

Examples

Description

Dataset Management:

Dogs vs Cats

This example describes how to manage Dogs vs Cats
dataset,

which is an image dataset with Classification label.

Dataset Management:

20 Newsgroups

This example describes how to manage 20 Newsgroups
dataset, which is a text dataset with Classification label.

Dataset Management:

BSTLD

This example describes how to manage BSTLD
dataset,

which is an image dataset with Box2D label.

Dataset Management:

Neolix OD

This example describes how to manage Neolix OD
dataset,

which is a Point Cloud dataset with Box3D label.

Dataset Management:

Leeds Sports Pose

This example describes how to manage Leeds Sports
Pose
dataset, which is an image dataset with Keypoints2D
label.

Dataset Management:

THCHS-30

This example describes how to manage THCHS-30
dataset,

which is an audio dataset with Sentence label.

Read “Dataset” Class: BSTLD

This example describes how to read BSTLD dataset
when it has been organized by a Dataset class.

1.2. Examples

https://gas.graviti.cn/dataset/data-decorators/DogsVsCats
https://gas.graviti.cn/dataset/data-decorators/Newsgroups20
https://gas.graviti.cn/dataset/data-decorators/BSTLD
https://gas.graviti.cn/dataset/graviti-open-dataset/NeolixOD
https://gas.graviti.cn/dataset/data-decorators/LeedsSportsPose
https://gas.graviti.cn/dataset/data-decorators/LeedsSportsPose
https://gas.graviti.cn/dataset/data-decorators/THCHS30
https://gas.graviti.cn/dataset/data-decorators/BSTLD

[S

TensorBay

1.2.1 Dogs vs Cats

This topic describes how to manage the “Dogs vs Cats” dataset.

“Dogs vs Cats” is a dataset with Classification label type. See this page for more details about this dataset.

Authorize a Client Object

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey—**xxx*"
gas = GAS (ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset ("Dogs vs Cats")

List Dataset Names

To check if you have created “Dogs vs Cats” dataset, you can list all your available datasets. See this page for details.

list (gas.list_dataset_names())

Note: Note that method 1ist_dataset_names () returns an iterator, use 1ist () to transfer it to a “list”.

Organize Dataset

Now we describe how to organize the “Dogs vs Cats” dataset by the Dat aset object before uploading it to TensorBay.
It takes the following steps to organize “Dogs vs Cats”.

Write the Catalog

The first step is to write the catalog(ref). Catalog is a json file contains all label information of one dataset. The only
annotation type for “Dogs vs Cats” is Classification, and there are 2 Category types.

{
"CLASSIFICATION": ({

"categories": [{ "name": "cat" }, { "name": "dog" }]

Important: See rhis part for more examples of catalogs with different label types.

6 Chapter 1. What can TensorBay SDK do?

https://gas.graviti.cn/dataset/data-decorators/DogsVsCats

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

TensorBay

Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset object.

The code block below displays the “Dogs vs Cats” dataloader.

#!/usr/bin/env python3

#

Copyright 2021 Graviti. Licensed under MIT License.
#

pylint: disable=invalid-name
"""Dataloader of the DogsVsCats dataset."""

import os

from ...dataset import Data, Dataset
from ...label import Classification
from .. _utility import glob
DATASET_NAME = "Dogs vs Cats"

_SEGMENTS = {"train": True, "test": False}

def DogsVsCats (path: str) —> Dataset:
"""Dataloader of the DogsVsCats dataset.

Arguments:
path: The root directory of the dataset.
The file structure should be like::

<path>
train/
cat.0. jpg
dog. 0. jpg
test/
1000. jpg
1001. jpg

Returns:
Loaded ' 'Dataset’ ' object.

mmn

root_path = os.path.abspath(os.path.expanduser (path))
dataset = Dataset (DATASET_NAME)
dataset.load_catalog(os.path.join(os.path.dirname(file),

for segment_name, is_labeled in _SEGMENTS.items () :
segment = dataset.create_segment (segment_name)
image_paths = glob(os.path.join (root_path, segment_name,
for image_path in image_paths:
data = Data(image_path)
if is_labeled:

"catalog.json"))

"x.Jpg"))

data.label.classification = Classification(os.path.basename (image_

—path) [:3])

(continues on next page)

1.2. Examples

52

54

TensorBay

(continued from previous page)

segment . append (data)

return dataset

Note that after creating the dataset, you need to load the catalog.(L43) The catalog file “catalog.json” is in the same
directory with dataloader file.

In this example, we create segments by dataset.create_segment (SEGMENT_NAME) . You can also create a

132

default segment without giving a specific name, then its name will be “”.

See this page for more details for about Classification annotation details.

Note: The Dogs vs Cats dataloader above uses relative import(LL11-12). However, when you write your own dat-
aloader you should use regular import. And when you want to contribute your own dataloader, remember to use
relative import.

Important: See rhis part for more examples of dataloaders with different label types.

Upload Dataset

After you finish the dataloader and organize the “Dogs vs Cats” into a Dataset object, you can upload it to Tensor-
Bay for sharing, reuse, etc.

dataset 1is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset (dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit ("Dogs vs Cats")

Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see
this page for more details about version control.

Note: Commit operation can also be done on our GAS Platform.

Read Dataset

Now you can read “Dogs vs Cats” dataset from TensorBay.

’dataset_client = gas.get_dataset ("Dogs vs Cats")

In dataset “Dogs vs Cats”, there are two Segments: train and test, you can get the segment names by list them all.

’list(dataset_client.list_segment_names())

You can get a segment by passing the required segment name.

from tensorbay.dataset import Segment

train_segment = Segment ("train", dataset_client)

In the train segment, there is a sequence of data. You can get one by index.

8 Chapter 1. What can TensorBay SDK do?

https://www.graviti.cn/tensorBay

TensorBay

data = train_segment [0]

132

Note: If the segment or fusion segment is created without given name, then its name will be *”.

In each data, there is a sequence of Classification annotations. You can get one by index.

category = data.label.classification.category

There is only one label type in “Dogs vs Cats” dataset, which is classification. The information stored in
Category is one of the category names in “categories” list of catalog.json. See this page for more details about the
structure of Classification.

Delete Dataset

To delete “Dogs vs Cats”, run the following code:

gas.delete_dataset ("Dogs vs Cats")

1.2.2 BSTLD

This topic describes how to manage the “BSTLD” dataset.
“BSTLD” is a dataset with Box2D label type (Fig. 1.1). See this page for more details about this dataset.

Fig. 1.1: The preview of a cropped image with labels from “BSTLD”.

1.2. Examples 9

https://gas.graviti.cn/dataset/data-decorators/BSTLD

TensorBay

Authorize a Client Object

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey—****x*"
gas = GAS (ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset ("BSTLD")

List Dataset Names

To check if you have created “BSTLD” dataset, you can list all your available datasets. See this page for details.

list (gas.list_dataset_names())

Note: Note that method 1ist_dataset_names () returns an iterator, use 1ist () to transfer it to a “list”.

Organize Dataset

Now we describe how to organize the “BSTLD” dataset by the Dataset object before uploading it to TensorBay. It
takes the following steps to organize “BSTLD”.

Write the Catalog

The first step is to write the caralog. Catalog is a json file contains all label information of one dataset. See this page
for more details. The only annotation type for “BSTLD” is Box2D, and there are 13 Category types and one Attributes

type.

{

"BOX2D": {
"categories": [

{ "name": "Red" },
{ "name": "RedLeft" },
{ "name": "RedRight" 1},
{ "nmame": "RedStraight" },
{ "name": "RedStraightLeft" 1},
{ "name": "Green" 1},
{ "name": "GreenLeft" 1},
{ "name": "GreenRight" },
{ "name": "GreenStraight" },
{ "nmame": "GreenStraightLeft" 1},
{ "nmame": "GreenStraigntRight" },
{ "name": "Yellow" },
{ "name": "off" }

(continues on next page)

10 Chapter 1. What can TensorBay SDK do?

20

21

22

23

24

25

20

21

22

23

24

25

26

27

28

29

30

31

33

34

36

37

39

40

TensorBay

(continued from previous page)

J 14
"attributes": |
{
"name": "occluded",
"type": "boolean"

Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset object.
The code block below displays the “BSTLD” dataloader.

#!/usr/bin/env python3
#
Copytright 2021 Graviti. Licensed under MIT License.

#
pylint: disable=invalid—-name

"""Dataloader of the BSTLD dataset."""

import os

from ...dataset import Data, Dataset
from ...label import LabeledBox2D
DATASET_NAME = "BSTLD"

_LABEL_FILENAME_DICT = {

"test": "test.yaml",
"train": "train.yaml",
"additional": "additional_train.yaml",

def BSTLD (path: str) —-> Dataset:
"""Dataloader of the BSTLD dataset.

Arguments:
path: The root directory of the dataset.
The file structure should be like::

<path>
rgb/
additional/
2015-10-05-10-52-01_bag/
<image_name>. jpg

test/
<image_name>. jpg

train/

(continues on next page)

1.2. Examples 11

41

42

43

44

45

46

)

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

TensorBay

(continued from previous page)

2015-05-29-15-29-39 arastradero_traffic light_loop bag/
<image_name>. jpg

test.yaml
train.yaml
additional_train.yaml

Returns:
Loaded ‘Dataset’ object.

mmn

import yaml # pylint: disable=import-outside-toplevel
root_path = os.path.abspath(os.path.expanduser (path))

dataset = Dataset (DATASET_NAME)
dataset.load_catalog(os.path.join(os.path.dirname(file), "catalog.json"))

for mode, label_file_name in _LABEL_FILENAME_DICT.items () :
segment = dataset.create_segment (mode)
label_file_path = os.path.join(root_path, label_file_name)

with open(label_file_path, encoding="utf-8") as fp:
labels = yaml.load(fp, yaml.FullLoader)

for label in labels:
if mode == "test":
the path in test label file looks like:
/absolute/path/to/<image_name>.png
file_path = os.path.join (root_path, "rgb", "test", label["path"].
—rsplit("/", 1)[-1])
else:
the path in label file looks like:
./rgb/additional/2015-10-05-10-52-01_bag/<image_name>.png
file_path = os.path.join(root_path, +label["path"][2:].split("/"))
data = Data(file_path)
data.label.box2d = [
LabeledBox2D (

box ["x_min"

]I
box["y_min"],
box["x_max"],
box ["y_max"],
category=box["label"],
attributes={"occluded": box["occluded"]},
)
for box in label["boxes"]

1
segment . append (data)

return dataset

Note that after creating the dataset, you need to load the catalog.(L58) The catalog file “catalog.json” is in the same
directory with dataloader file.

In this example, we create segments by dataset.create_segment (SEGMENT_NAME) . You can also create a

[132]

default segment without giving a specific name, then its name will be “”.

12 Chapter 1. What can TensorBay SDK do?

TensorBay

See this page for more details for about Box2D annotation details.

Note: The BSTLD dataloader above uses relative import(L11-12). However, when you write your own dataloader
you should use regular import. And when you want to contribute your own dataloader, remember to use relative
import.

Upload Dataset

After you finish the dataloader and organize the “BSTLD” into a Dataset object, you can upload it to TensorBay
for sharing, reuse, etc.

dataset 1is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset (dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit ("BSTLD")

Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see
this page for more details about version control.

Note: Commit operation can also be done on our GAS Platform.

Read Dataset

Now you can read “BSTLD” dataset from TensorBay.

’dataset_client = gas.get_dataset ("BSTLD")

In dataset “BSTLD”, there are three Segments: train, test and additional, you can get the segment names by
list them all.

’list(dataset_client.list_segment_names())

You can get a segment by passing the required segment name.

from tensorbay.dataset import Segment

train_segment = Segment ("train", dataset_client)

In the train segment, there is a sequence of data. You can get one by index.

data = train_segment [3]

32

Note: If the segment or fusion segment is created without given name, then its name will be

In each data, there is a sequence of Box2D annotations. You can get one by index.

label_box2d = data.label.box2d[0]
category = label_box2d.category
attributes = label_box2d.attributes

1.2. Examples 13

https://www.graviti.cn/tensorBay

TensorBay

There is only one label type in “BSTLD” dataset, which is box2d. The information stored in Category is one of
the category names in “categories” list of caralog.json. The information stored in Attributes is one of the attributes in
“attributes” list of catalog.json. See this page for more details about the structure of Box2D.

Delete Dataset

To delete “BSTLD”, run the following code:

gas.delete_dataset ("BSTLD")

1.2.3 Leeds Sports Pose

This topic describes how to manage the “Leeds Sports Pose” dataset.

“Leeds Sports Pose” is a dataset with Keypoints2D label type (Fig. 1.2). See this page for more details about this
dataset.

Authorize a Client Object

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey—#*xxxx*"
gas = GAS (ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset ("LeedsSportsPose")

List Dataset Names

To check if you have created “Leeds Sports Pose” dataset, you can list all your available datasets. See this page for
details.

list (gas.list_dataset_names())

Note: Note that method 1ist_dataset_names () returns an iterator, use 1ist () to transfer it to a “list”.

14 Chapter 1. What can TensorBay SDK do?

https://gas.graviti.cn/dataset/data-decorators/LeedsSportsPose

TensorBay

JRATIO iC FROPER SOCTER S
(419} §41-9211

Fig. 1.2: The preview of an image with labels from “Leeds Sports Pose”.

1.2. Examples

15

20

21

22

23

24

25

26

27

28

29

TensorBay

Organize Dataset

Now we describe how to organize the “Leeds Sports Pose” dataset by the Dataset object before uploading it to
TensorBay. It takes the following steps to organize “Leeds Sports Pose”.

Write the Catalog

The first step is to write the caralog. Catalog is a json file contains all label information of one dataset. See this page
for more details. The only annotation type for “Leeds Sports Pose” is Keypoints2D.

{
"KEYPOINTS2D": ({
"keypoints": |
{

"number": 14,

"names": [
"Right ankle",
"Right knee",
"Right hip",
"Left hip",
"Left knee",
"Left ankle",
"Right wrist",
"Right elbow",
"Right shoulder",
"Left shoulder",
"Left elbow",
"Left wrist",
"Neck",
"Head top"

]I

"skeleton": [
(0, 11,
(1, 21,
(3, 41,
(4, 51,
(6, 71,
(7, 81,
[9, 101,
(1o, 111,
[12, 131,
[12, 21,
[12, 3]

]I

"visible": "BINARY"

}
1
}
}

16 Chapter 1. What can TensorBay SDK do?

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

TensorBay

Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset object.
The code block below displays the “Leeds Sports Pose” dataloader.

#!/usr/bin/env python3

#

Copyright 2021 Graviti. Licensed under MIT License.
#

pylint: disable=invalid-name

"""Dataloader of the LeedsSportsPose dataset."""

import os

from ...dataset import Data, Dataset
from ...geometry import Keypoint2D
from ...label import LabeledKeypoints2D

from .. utility import glob

DATASET_NAME = "Leeds Sports Pose"

def LeedsSportsPose (path: str) —-> Dataset:
"""Dataloader of the LeedsSportsPose dataset.

Arguments:
path: The root directory of the dataset.
The folder structure should be like::

<path>
joints.mat
images/
im0001. jpg
im0002. jpg

Returns:
Loaded ‘Dataset’ object.

mmn

from scipy.io import loadmat # pylint: disable=import-outside-toplevel
root_path = os.path.abspath(os.path.expanduser (path))

dataset = Dataset (DATASET_NAME)

dataset.load_catalog(os.path.join(os.path.dirname(file), "catalog.json"))
segment = dataset.create_segment ()
mat = loadmat (os.path.join(root_path, "joints.mat"))

joints = mat["joints"].T
image_paths = glob(os.path.join(root_path, "images", "x.jpg"))
for image_path in image_paths:
data = Data (image_path)
data.label.keypoints2d = []
index = int (os.path.basename (image_path) [2:6]) - 1 # get image index from
—"im0001. jpg"

(continues on next page)

1.2. Examples 17

53

55

56

58

59

60

61

62

TensorBay

(continued from previous page)

keypoints = LabeledKeypoints2D ()
for keypoint in joints[index]:
keypoints.append(# pylint: disable=no-member # pylint issue #3131
Keypoint2D (keypoint [0], keypoint[1l], int (not keypoint[2]))

data.label.keypoints2d.append (keypoints)
segment . append (data)
return dataset

Note that after creating the dataset, you need to load the catalog.(L42) The catalog file “catalog.json” is in the same
directory with dataloader file.

In this example, we create a default segment without giving a specific name. You can also create a segment by
dataset.create_segment (SEGMENT_NAME) .

See this page for more details for about Keypoints2D annotation details.

Note: The LeedsSportsPose dataloader above uses relative import(L11-13). However, when you write your own
dataloader you should use regular import. And when you want to contribute your own dataloader, remember to use
relative import.

Upload Dataset

After you finish the dataloader and organize the “Leeds Sports Pose” into a Dataset object, you can upload it to
TensorBay for sharing, reuse, etc.

dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset (dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit ("LeedsSportsPose™)

Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see
this page for more details about version control.

Note: Commit operation can also be done on our GAS Platform.

Read Dataset

Now you can read “Leeds Sports Pose” dataset from TensorBay.

dataset_client = gas.get_dataset ("LeedsSportsPose")

In dataset “Leeds Sports Pose”, there is one default Segments " " (empty string). You can get it by passing the segment
name.

from tensorbay.dataset import Segment

default_segment = Segment ("", dataset_client)

In the train segment, there is a sequence of data. You can get one by index.

18 Chapter 1. What can TensorBay SDK do?

https://www.graviti.cn/tensorBay

TensorBay

data = default_segment[0]

132

Note: If the segment or fusion segment is created without given name, then its name will be

In each data, there is a sequence of Keypoints2D annotations. You can get one by index.

label_keypoints2d = data.label.keypoints2d[0]
x = data.label.keypoints2d[0][0].x
y = data.label.keypoints2d[0][0].y
v = data.label.keypoints2d[0][0].v

There is only one label type in “Leeds Sports Pose” dataset, which is keypoints2d. The information stored in x
(y) is the x (y) coordinate of one keypoint of one keypoints list. The information stored in v is the visible status of one
keypoint of one keypoints list. See this page for more details about the structure of Keypoints2D.

Delete Dataset

To delete “Leeds Sports Pose”, run the following code:

gas.delete_dataset ("LeedsSportsPose")

1.2.4 Neolix OD

This topic describes how to manage the “Neolix OD” dataset.

“Neolix OD” is a dataset with Box3D label type (Fig. 1.3). See this page for more details about this dataset.

Fig. 1.3: The preview of a point cloud from “Neolix OD” with Box3D labels.

1.2. Examples 19

https://gas.graviti.cn/dataset/graviti-open-dataset/NeolixOD

TensorBay

Authorize a Client Object

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey—****x*"
gas = GAS (ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset ("Neolix OD")

List Dataset Names

To check if you have created “Neolix OD” dataset, you can list all your available datasets. See this page for details.

list (gas.list_dataset_names())

Note: Note that method 1ist_dataset_names () returns an iterator, use 1ist () to transfer it to a “list”.

Organize Dataset

Now we describe how to organize the “Neolix OD” dataset by the Dataset object before uploading it to TensorBay.
It takes the following steps to organize “Neolix OD”.

Write the Catalog

The first step is to write the caralog. Catalog is a json file contains all label information of one dataset. See this page
for more details. The only annotation type for “Neolix OD” is Box3D, and there are 15 Category types and 3 Attributes

types.

{

"BOX3D": {
"categories": [

{ "nmame": "Adult" 1},
{ "name": "Animal" 1},
{ "name": "Barrier" 1},
{ "nmame": "Bicycle" },
{ "name": "Bicycles" 1},
{ "name": "Bus" },
{ "name": "Car" },
{ "mame": "Child" 1},
{ "name": "Cyclist" },
{ "name": "Motorcycle" 1},
{ "nmame": "Motorcyclist" },
{ "name": "Trailer" 1},
{ "mame": "Tricycle" },

(continues on next page)

20 Chapter 1. What can TensorBay SDK do?

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

20

21

22

23

24

25

TensorBay

(continued from previous page)

{ "name": "Truck" },
{ "name": "Unknown" }
1,
"attributes": |

{

"name": "Alpha",
"type": "number",
"description": "Angle of view"
}I
{
"name": "Occlusion",
"enum": [0, 1, 2],
"description": "It indicates the degree of occlusion of objects by,

—other obstacles"
by
{

"name": "Truncation",
"type": "boolean",
"description": "It indicates whether the object is truncated by the

—~edge of the image"

}

Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset object.
The code block below displays the “Neolix OD” dataloader.

#!/usr/bin/env python3
#
Copyright 2021 Graviti. Licensed under MIT License.

#
pylint: disable=invalid-name
"""Dataloader of the NeolixOD dataset."""

import os

from quaternion import from rotation_vector

from ...dataset import Data, Dataset
from ...label import LabeledBox3D
from .. _utility import glob
DATASET_NAME = "Neolix OD"

def NeolixOD (path: str) —-> Dataset:
"""Dataloader of the NeolixOD dataset.

Arguments:
path: The root directory of the dataset.
The file structure should be like::

(continues on next page)

1.2. Examples 21

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

53

54

56

57

59

60

61

63

64

65

66

67

68

69

70

71

2

73

74

TensorBay

(continued from previous page)

<path>
bins/
<id>.bin
labels/
<id>.txt

Returns:
Loaded ‘Dataset’ object.

mmn

root_path = os.path.abspath (os.path.expanduser (path))

dataset = Dataset (DATASET_NAME)
dataset.load_catalog(os.path.join(os.path.dirname(file), "catalog.json"))
segment = dataset.create_segment ()

point_cloud_paths = glob(os.path.join (root_path, "bins", "x.bin"))

for point_cloud_path in point_cloud_paths:
data = Data (point_cloud_path)
data.label.box3d = []

point_cloud_id = os.path.basename (point_cloud_path) [:6]
label_path = os.path.join(root_path, "labels", f"{point_cloud_id/.txt")

with open (label_path, encoding="utf-8") as fp:
for label_value_raw in fp:
label_value = label_value_raw.rstrip() .split ()
label = LabeledBox3D (
size=[float (label_value[10]), float (label_value[9]), float (label_
—value[8])1,
translation=[
float (label_value[1l1]),
float (label_value[12]),
float (label_value[13]) + 0.5 + float (label_valuel[8]),
1,
rotation=from_rotation_vector((0, 0, float (label_value[l4]1))),
category=label_valuel[O0],
attributes={
"Occlusion": int (label_valuel[l]),
"Truncation": bool (int (label_value[2])),
"Alpha": float (label_value[3]),
}I
)
data.label.box3d.append(label)

segment . append (data)
return dataset

Note that after creating the dataset, you need to load the caralog.(L41) The catalog file “catalog.json” is in the same
directory with dataloader file.

In this example, we create segments by dataset.create_segment (SEGMENT_NAME) . You can also create a

332

default segment without giving a specific name, then its name will be “”.

See this page for more details for about Box3D annotation details.

22 Chapter 1. What can TensorBay SDK do?

TensorBay

Note: The Neolix OD dataloader above uses relative import(L13-14). However, when you write your own dataloader
you should use regular import. And when you want to contribute your own dataloader, remember to use relative
import.

Upload Dataset

After you finish the dataloader and organize the “Neolix OD” into a Dataset object, you can upload it to TensorBay
for sharing, reuse, etc.

dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset (dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit ("Neolix OD")

Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see
this page for more details about version control.

Note: Commit operation can also be done on our GAS Platform.

Read Dataset

Now you can read “Neolix OD” dataset from TensorBay.

dataset_client = gas.get_dataset ("Neolix OD")

In dataset “Neolix OD”, there is one default Segment: "" (empty string). You can get a segment by passing the
required segment name.

from tensorbay.dataset import Segment

default_segment = Segment ("", dataset_client)

In the default segment, there is a sequence of data. You can get one by index.

data = default_segment [0]

[332]

Note: If the segment or fusion segment is created without given name, then its name will be

In each data, there is a sequence of Box3D annotations. You can get one by index.

label _box3d = data.label.box3d[0]
category = label_box3d.category
attributes = label_box3d.attributes

There is only one label type in “Neolix OD” dataset, which is box3d. The information stored in Category is one of
the category names in “categories” list of catalog.json. The information stored in Attributes is one of the attributes in
“attributes” list of catalog.json.

See this page for more details about the structure of Box3D.

1.2. Examples 23

https://www.graviti.cn/tensorBay

TensorBay

Delete Dataset

To delete “Neolix OD”, run the following code:

gas.delete_dataset ("Neolix OD")

1.2.5 THCHS-30

This topic describes how to manage the “THCHS-30" dataset.

“THCHS-30” is a dataset with Sentence label type. See this page for more details about this dataset.

Authorize a Client Object

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey—x***x*"
gas = GAS (ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset ("THCHS-30")

List Dataset Names

To check if you have created “THCHS-30” dataset, you can list all your available datasets. See this page for details.

list (gas.list_dataset_names())

Note: Note that method 1ist_dataset_names () returns an iterator, use 1ist () to transfer it to a “list”.

Organize Dataset

Now we describe how to organize the “THCHS-30" dataset by the Dataset object before uploading it to TensorBay.
It takes the following steps to organize “THCHS-30".

24 Chapter 1. What can TensorBay SDK do?

https://www.graviti.com/open-datasets/data-decorators/THCHS30

20

21

22

23

24

25

26

27

28

29

30

32

33

35

36

38

39

40

41

42

43

44

45

TensorBay

Write the Catalog

The first step is to write the caralog. Typically, Catalog is a json file contains all label information of one dataset. See
this page for more details. However the catalog of THCHS-30 is too large, so we need to load the subcatalog by the

raw file and map it to catalog, See code block below for more details.

Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset object.

The code block below displays the “THCHS-30 dataloader.

#!/usr/bin/env python3

#

Copyright 2021 Graviti. Licensed under MIT License.
#

pylint: disable=invalid-name
"""Dataloader of the THCHS-30 dataset."""

import os
from itertools import islice
from typing import List

from ...dataset import Data, Dataset
from ...label import LabeledSentence, SentenceSubcatalog,
from .. utility import glob

DATASET_NAME = "THCHS-30"
_SEGMENT_NAME_LIST = ("train", "dev", "test")

def THCHS30 (path: str) —-> Dataset:
"""Dataloader of the THCHS-30 dataset.

Arguments:
path: The root directory of the dataset.
The file structure should be like::

<path>
1m word/
lexicon.txt
data/
All_O.wav.trn

dev/
All_101.wav

train/

test/

Returns:
Loaded ‘Dataset’ object.

mmn

dataset = Dataset (DATASET_NAME)

dataset.catalog.sentence = _get_subcatalog(os.path.join (path,

Word

"Ilm_word", "lexicon.

STXTTT)

(continues on next page)

1.2. Examples

25

46

47

48

49

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

TensorBay

(continued from previous page)

for segment_name in _SEGMENT_NAME_LIST:
segment = dataset.create_segment (segment_name)
for filename in glob (os.path.join(path, segment_name, "x.wav")):
data = Data(filename)
label_file = os.path.join(path, "data", os.path.basename(filename) + ".trn

data.label.sentence = _get_label (label_ file)
segment . append (data)
return dataset

def _get_label (label_file: str) —-> List[LabeledSentence]:
with open(label_file, encoding="utf-8") as fp:
labels = ((Word(text=text) for text in texts.split()) for texts in fp)
return [LabeledSentence (*labels)]

def _get_subcatalog(lexion_path: str) —-> SentenceSubcatalog:
subcatalog = SentenceSubcatalog ()
with open(lexion_path, encoding="utf-8") as fp:
for line in islice(fp, 4, None):
subcatalog.append_lexicon (line.strip () .split())
return subcatalog

Normally, after creating the dataset, you need to load the catalog. However, in this example, there is no catalog.
json file, because the lexion of THCHS-30 is too large (See more details of lexion in Sentence). Therefore, We load
subcatalog from the raw file lexicon.txt and map it to have the catalog.(L45)

See this page for more details about Sentence annotation details.

Note: The THCHS-30 dataloader above uses relative import(L13-14). However, when you write your own dataloader
you should use regular import. And when you want to contribute your own dataloader, remember to use relative import.

Upload Dataset

After you finish the dataloader and organize the “THCHS-30" into a Dataset object, you can upload it to TensorBay
for sharing, reuse, etc.

dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset (dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit ("THCHS-30")

Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see
Version Control for more details.

Note:

Commit operation can alse be done on our GAS Platform.

26 Chapter 1. What can TensorBay SDK do?

https://www.graviti.cn/tensorBay

TensorBay

Read Dataset

Now you can read “THCHS-30" dataset from TensorBay.

’dataset_client = gas.get_dataset ("THCHS-30")

In dataset “THCHS-30”, there are three Segments: dev, train and test, you can get the segment names by list
them all.

’list(dataset_client.list_segment_names())

You can get a segment by passing the required segment name.

from tensorbay.dataset import Segment

dev_segment = Segment ("dev", dataset_client)

In the dev segment, there is a sequence of dara. You can get one by index.

data = dev_segment [0]

132

Note: If the segment or fusion segment is created without given name, then its name will be “”.

In each data, there is a sequence of Sentence annotations. You can get one by index.

labeled_sentence = data.label.sentence[0]
sentence = labeled_sentence.sentence
spell = labeled_sentence.spell

phone = labeled_sentence.phone

There is only one label type in “THCHS-30" dataset, which is Sentence. It contains sentence, spell and
phone information. See this page for more details about the structure of Sentence.

Delete Dataset

To delete “THCHS-30”, run the following code:

gas.delete_dataset ("THCHS-30")

1.2.6 20 Newsgroups

This topic describes how to manage the “20 Newsgroups” dataset.

“20 Newsgroups” is a dataset with Classification label type. See this page for more details about this dataset.

1.2. Examples 27

https://gas.graviti.cn/dataset/data-decorators/Newsgroups20

TensorBay

Authorize a Client Object

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey—****x*"
gas = GAS (ACCESS_KEY)

Create Dataset

Then, create a dataset client by passing the dataset name to the GAS client.

gas.create_dataset ("20 Newsgroups")

List Dataset Names

To check if you have created “20 Newsgroups” dataset, you can list all your available datasets. See this page for
details.

list (gas.list_dataset_names())

Note: Note that method 1ist_dataset_names () returns an iterator, use 1ist () to transfer it to a “list”.

Organize Dataset

Now we describe how to organize the “20 Newsgroups” dataset by the Dataset object before uploading it to Ten-
sorBay. It takes the following steps to organize “20 Newsgroups”.

Write the Catalog

The first step is to write the caralog. Catalog is a json file contains all label information of one dataset. See this page
for more details. The only annotation type for “20 Newsgroups” is Classification, and there are 20 Category types.

{
"CLASSIFICATION": {

"categories": [
{ "mame": "alt.atheism" },
{ "name": "comp.graphics" },
{ "name": "comp.os.ms-windows.misc" },
{ "mame": "comp.sys.ibm.pc.hardware" },
{ "name": "comp.sys.mac.hardware" 1},
{ "name": "comp.windows.x" },
{ "name": "misc.forsale" },
{ "name": "rec.autos" 1},
{ "name": "rec.motorcycles" 1},
{ "name": "rec.sport.baseball" 1},
{ "name": "rec.sport.hockey" },
{ "name": "sci.crypt" },
{ "name": "sci.electronics" },

(continues on next page)

28 Chapter 1. What can TensorBay SDK do?

20

21

22

23

24

25

26

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

TensorBay

(continued from previous page)

{ "name": "sci.med" },

{ "name": "sci.space" },

{ "mame": "soc.religion.christian" },
{ "mame": "talk.politics.guns" },

{ "nmame": "talk.politics.mideast" },
{ "mame": "talk.politics.misc" },

{ "mame": "talk.religion.misc" }

[Tt

Note: The categories in dataset “20 Newsgroups” have parent-child relationship, and it use .
levels.

to sparate different

Write the Dataloader

The second step is to write the dataloader. The function of dataloader is to read the dataset into a Dataset object.

The code block below displays the “20 Newsgroups” dataloader.

#!/usr/bin/env python3

#

Copyright 2021 Graviti. Licensed under MIT License.
#

pylint: disable=invalid—-name

"""Dataloader of the NewsgroupsZ20 dataset."""
import os

from ...dataset import Data, Dataset
from ...label import Classification
from .. utility import glob

DATASET_NAME = "20 Newsgroups"

SEGMENT_DESCRIPTION_DICT = {
"20_newsgroups": "Original 20 Newsgroups data set",
"20news-bydate-train": (

"Training set of the second version of 20 Newsgroups, "

"which is sorted by date and has duplicates and some headers removed"

) s
"20news-bydate-test": (
"Test set of the second version of 20 Newsgroups,

"

"which is sorted by date and has duplicates and some headers removed"

)y
"20news—-18828": (

"The third version of 20 Newsgroups, which has duplicates removed "

"and includes only 'From' and 'Subject' headers"
)

def Newsgroups20 (path: str) -> Dataset:
"""Dataloader of the Newsgroups2(0 dataset.

(continues on next page)

1.2. Examples

29

35

37

38

40

41

42

43

44

45

46

4

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

7

78

79

81

82

84

85

87

88

90

91

TensorBay

(continued from previous page)

Arguments:
path: The root directory of the dataset.
The folder structure should be like::

<path>
20news-18828/
alt.atheism/
49960
51060
51119
51120

comp.graphics/
comp.os.ms-windows.misc/
comp.sys.ibm.pc.hardware/
comp.sys.mac.hardware/
comp.windows.x/
misc.forsale/
rec.autos/
rec.motorcycles/
rec.sport.baseball/
rec.sport.hockey/
sci.crypt/
sci.electronics/
sci.med/
sci.space/
soc.religion.christian/
talk.politics.guns/
talk.politics.mideast/
talk.politics.misc/
talk.religion.misc/
20news-bydate-test/
20news-bydate-train/
20_newsgroups/

Returns:
Loaded ‘Dataset’ object.

root_path = os.path.abspath(os.path.expanduser (path))

dataset = Dataset (DATASET_NAME)
dataset.load_catalog(os.path.join(os.path.dirname(_file), "catalog.json"))

for segment_name, segment_description in SEGMENT_DESCRIPTION_DICT.items() :
segment_path = os.path.join(root_path, segment_name)
if not os.path.isdir (segment_path) :

continue
segment = dataset.create_segment (segment_name)
segment .description = segment_description

text_paths = glob(os.path.join (segment_path, "x", "x"))
for text_path in text_paths:
category = os.path.basename (os.path.dirname (text_path))

data = Data(

(continues on next page)

30

Chapter 1. What can TensorBay SDK do?

92

93

94

95

96

97

TensorBay

(continued from previous page)

text_path, target_remote_path=f" {category//{os.path.basename (text_
—path) j.txt"
)
data.label.classification
segment . append (data)

Classification (category)

return dataset

Note that after creating the dataset, you need to load the catalog. (L77) The catalog file “catalog.json” is in the same
directory with dataloader file.

In this example, we create segments by dataset.create_segment (SEGMENT_NAME) . You can also create a

132

default segment without giving a specific name, then its name will be “”.

See this page for more details for about Classification annotation details.

Note: The 20 Newsgroups dataloader above uses relative import(L11-12). However, when you write your own
dataloader you should use regular import as shown below. And when you want to contribute your own dataloader,
remember to use relative import.

Note: The data in “20 Newsgroups” do not have extensions so that we add a “txt” extension to the remote path of
each data file(LL92) to ensure the loaded dataset could function well on TensorBay.

Upload Dataset

After you finish the dataloader and organize the “20 Newsgroups” into a Dataset object, you can upload it to
TensorBay for sharing, reuse, etc.

dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset (dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit ("20 Newsgroups")

Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see
this page for more details about version control.

Note: Commit operation can also be done on our GAS Platform.

Read Dataset

Now you can read “20 Newsgroups” dataset from TensorBay.

’dataset_client = gas.get_dataset ("20 Newsgroups")

In dataset “20 Newsgroups”, there are four Segments: 20news-18828, 20news-bydate-test and
20news-bydate-train, 20_newsgroups you can get the segment names by list them all.

’list(dataset_client.list_segment_names())

You can get a segment by passing the required segment name.

1.2. Examples 31

https://www.graviti.cn/tensorBay

TensorBay

from tensorbay.dataset import Segment

segment_20news_18828 = Segment ("20news-18828", dataset_client)

In the 20news-18828 segment, there is a sequence of data. You can get one by index.

data = segment_20news_18828[0]

132

Note: If the segment or fusion segment is created without given name, then its name will be “”.

In each data, there is a sequence of Classification annotations. You can get one by index.

category = data.label.classification.category

There is only one label type in “20 Newsgroups” dataset, which is Classification. The information stored in
Category is one of the category names in “categories” list of catalog.json. See this page for more details about the
structure of Classification.

Delete Dataset

To delete “20 Newsgroups”, run the following code:

gas.delete_dataset ("20 Newsgroups")

1.2.7 Read “Dataset” Class

This topic describes how to read the Dataset class after you have organized the “BSTLD” dataset. See this page
for more details about this dataset.

As mentioned in Dataset Management, you need to write a dataloader to get a Dat aset. However, there are already
a number of dataloaders in TensorBay SDK provided by the community. Thus, instead of writing, you can just import
an available dataloader.

The local directory structure for “BSTLD” should be like:

<path>
rgb/
additional/
2015-10-05-10-52-01_bag/
<image_name>. jpg

test/
<image_name>. jpg

train/
2015-05-29-15-29-39_arastradero_traffic_light_loop_bag/
<image_name>. jpg

test.yaml
train.yaml
additional_train.yaml

32 Chapter 1. What can TensorBay SDK do?

https://gas.graviti.cn/dataset/data-decorators/BSTLD

TensorBay

from tensorbay.opendataset import BSTLD

dataset = BSTLD ("path/to/dataset/directory")

Warning: Dataloaders provided by the community work well only with the original dataset directory structure.
Downloading datasets from either official website or Graviti Opendatset Platform is highly recommended.

TensorBay supplies two methods to fetch segment from dataset.

train_segment = dataset.get_segment_by_name ("train")
first_segment = dataset[0]

The segment you get now is the same as the one you read from TensorBay. In the train segment, there is a sequence of
data. You can get one by index.

data = train_segment [3]

In each data, there is a sequence of Box2D annotations. You can get one by index.

label_box2d = data.label.box2d[0]
category = label box2d.category
attributes = label _box2d.attributes

1.3 Dataset Management

This topic describes the key operations towards your datasets, including:
* Organize Dataset
* Upload Dataset

e Read Dataset

1.3.1 Organize Dataset
TensorBay SDK supports methods to organize your local datasets into uniform TensorBay dataset strucutre (ref). The
typical steps to organize a local dataset:

* First, write a dataloader (ref) to load the whole local dataset into a Dataset instance,

* Second, write a catalog (ref) to store all the label meta information inside a dataset.

Note: A catalog is needed only if there is label information inside the dataset.

This part is an example for organizing a dataset.

1.3. Dataset Management 33

https://www.graviti.cn/open-datasets

TensorBay

1.3.2 Upload Dataset

There are two usages for the organized local dataset (i.e. the initialized Dataset instance):

* Upload it to TensorBay.

* Use it directly.
In this section, we mainly discuss the uploading operation. See this example for details about the latter usage.
There are plenty of benefits of uploading local datasets to TensorBay.

* Reuse: you can reuse your datasets without preprocessing again.

 Share: you can share them with your team or the community.

* Preview: you can preview your datasets without coding.

* Version control: you can upload different versions of one dataset and control them conveniently.

This part is an example for uploading a dataset.

1.3.3 Read Dataset

There are two types of datasets you can read from TensorBay:
¢ Datasets uploaded by yourself as mentioned in Upload Dataset.

* Datasets uplaoded by the community (i.e. the open datasets).

Note: Before reading a dataset uploaded by the community, you need to fork it first.

Note: You can visit our Graviti Al Service(GAS) platform to check the dataset details, such as dataset name, version
information, etc.

This part is an example for reading a dataset.

1.4 Version Control

TensorBay currently supports the linear version control. A new version of a dataset can be built upon the previous
version. Figure. 1.4 demonstrates the relations between different versions of a dataset.

1.4.1 Draft And Commit

The version control is based on the Draft and Commit.

In TensorBay SDK, the GAS is responsible for operating the datasets, while the DatasetClient is for operating
content of one dataset in the draft or commit. Thus, the dataset client supports the function of version control.

In this section, you’ll learn the relationship between the draft and commit.

34 Chapter 1. What can TensorBay SDK do?

https://www.graviti.cn/open-datasets
https://docs.graviti.cn/guide/opendataset/fork
https://www.graviti.cn/tensorBay

TensorBay

llllll

-0 3e823190 *
(tag 1.0.1) "+, Commit
................. ;."““"""-"“. i:
< Draft)
O 3e781231 Create draft
-O- 3770187

(tag 1.0.0)

Fig. 1.4: The relations between different versions of a dataset.

1.4. Version Control

35

TensorBay

Commit
Similar with Git, a commit is a version of a dataset, which contains the changes compared with the former commit.
You can view a certain commit of a dataset based on the given commit ID.

A commit is readable, but is not writable. Thus, only read operations such as getting catalog, files and labels are
allowed. To make changes to a dataset, please create a draft first. See Draft for details.

On the other hand, “commit” also represents the action to save the changes inside a Draft into a commit.

Draft

Unlike Git, a draft is a new concept which represents a workspace in which changing the dataset is allowed.
A draft is created based on a Commit, and the changes inside it will be made into a commit.

There are scenarios when modifications of a dataset are required, such as correcting errors, enlarging dataset, adding
more types of labels, etc. Under these circumstances, you can create a draft, edit the dataset and commit the draft.

Before Use

In the next part, you’ll learn the basic operations towards draft and commit.

First, a dataset client object is needed.

from tensorbay import GAS

ACCESS_KEY = "Accesskey—x*x**xx"
gas = GAS (ACCESS_KEY)
dataset_client = gas.create_dataset ("DatasetName")

Create Draft

TensorBay SDK supports creating the draft straightforwardly, which is based on the current commit.

dataset_client.create_draft ("draft-1")

Then the dataset client will change the status to “draft” and store the draft number. The draft number will be auto-
increasing every time you create a draft. The draft number can be found through listing drafts.

is_draft = dataset_client.status.is_draft
draft_number = dataset_client.status.draft_number

1is draft = True (True for draft, False for commit)
draft_number = 1

36 Chapter 1. What can TensorBay SDK do?

TensorBay

List Drafts

Listing the existing Draft in TensorBay SDK is simple.

drafts = list (dataset_client.list_drafts())

Get Draft

TensorBay SDK supports getting the Dra £t with the draft number.

draft = dataset_client.get_draft (draft_number=1)

Commit Draft

TensorBay SDK supports committing the draft, after that the draft will be closed.

dataset_client.commit ("commit—1")

Then the dataset client will change the status to “commit” and store the commit ID.

is_draft = dataset_client.status.is_draft

commit_id = dataset_client.status.commit_id

1s_draft = False (True for draft, False for commit)
commit_id = "xx#"

Get Commit

TensorBay SDK supports getting the Comm i t with the commit ID.

commit = dataset_client.get_commit (commit_id)

List Commits

Listing the existing Commit in TensorBay SDK is simple.

commits = list (dataset_client.list_commits())

Checkout

The dataset client can checkout to other draft with draft number or to commit with commit id.

checkout to the draft.

dataset_client.checkout (draft_number=draft_number)
checkout to the commit.

dataset_client.checkout (revision=commit_id)

1.4. Version Control

37

TensorBay

1.4.2 Tag

TensorBay SDK has the ability to tag specific commits in a dataset’s history as being important. Typically, people use
this functionality to mark release points (v1.0, v2.0 and so on). In this section, you’ll learn how to list existing tags,
how to create and delete tags.

Before operating tags, a dataset client object with commit is needed.

from tensorbay import GAS

ACCESS_KEY = "Accesskey—#*xxx*"

gas = GAS (ACCESS_KEY)

dataset_client = gas.create_dataset ("DatasetName")
dataset_client.create_draft ("draft-1")
dataset_client.commit ("commit—-1")

Create Tag

TensorBay SDK supports two approaches of creating the tag.

One is creating the tag straightforwardly, which is based on the current commit.

dataset_client.create_tag("Tag-1")

The other is creating the tag when committing.

dataset_client.create_draft ("draft-2")
dataset_client.commit ("commit-2", tag="Tag-1")

Get Tag

TensorBay SDK supports getting the Tag with the tag name.

tag = dataset_client.get_tag("Tag-1")

list Tags

Listing the existing Tag in TensorBay SDK is simple.

tags = list (dataset_client.list_tags{())

Delete Tag

TensorBay SDK supports deleting the tag with the tag name.

dataset_client.delete_tag("Tag-1")

38 Chapter 1. What can TensorBay SDK do?

TensorBay

1.5 Fusion Dataset

Fusion dataset represents datasets with data collected from multiple sensors. Typical examples of fusion dataset are
some autonomous driving datasets, such as nuScenes and KITTI-tracking.

See this page for the comparison between the fusion dataset and the dataset.

1.5.1 Fusion Dataset Structure

TensorBay also defines a uniform fusion dataset format. In this topic, we explain the related concepts. The TensorBay
fusion dataset format looks like:

fusion dataset

— notes

—— catalog

— subcatalog
—— subcatalog
—— fusion segment
— sensors

sensor
sensor
— frame
|: data
— frame

|: data

—— fusion segment

fusion dataset

Fusion dataset is the topmost concept in TensorBay format. Each fusion dataset includes a catalog and a certain
number of fusion segments.

The corresponding class of fusion dataset is FusionDataset.

notes

The notes of the fusion dataset is the same as the notes (ref) of the dataset.

1.5. Fusion Dataset 39

https://gas.graviti.cn/dataset/graviti-open-dataset/nuScenes
https://gas.graviti.cn/dataset/data-decorators/KITTITracking

TensorBay

catalog & subcatalog in fusion dataset

The catalog of the fusion dataset is the same as the catalog (ref) of the dataset.

fusion segment
There may be several parts in a fusion dataset. In TensorBay format, each part of the fusion dataset is stored in one

fusion segment. Each fusion segment contains a certain number of frames and multiple sensors, from which the data
inside the fusion segment are collected.

The corresponding class of fusion segment is FusionSegment.
sensor

Sensor represents the device that collects the data inside the fusion segment. Currently, TensorBay supports four
sensor types.(Table. 1.2)

Table 1.2: supported sensors

Supported Sensors | Corresponding Data Type
Camera image

FisheyeCamera image

Lidar point cloud

Radar point cloud

The corresponding class of sensor is Sensor.

frame

Frame is the structural level next to the fusion segment. Each frame contains multiple data collected from different
sensors at the same time.

The corresponding class of frame is Frame.
data in fusion dataset

Each data inside a frame corresponds to a sensor. And the data of the fusion dataset is the same as the data (ref) of the
dataset.

1.5.2 CADC

This topic describes how to manage the “CADC” dataset.

“CADC?” is a fusion dataset with 8 sensors including 7 cameras and 1 1idar , and has Box3D type of labels on the
point cloud data. (Fig. 1.5). See this page for more details about this dataset.

40 Chapter 1. What can TensorBay SDK do?

https://gas.graviti.cn/dataset/hello-dataset/CADC

TensorBay

Fig. 1.5: The preview of a point cloud from “CADC” with Box3D labels.

1.5.

Fusion Dataset

41

TensorBay

Authorize a Client Object

First of all, create a GAS client.

from tensorbay import GAS

ACCESS_KEY = "Accesskey—**xx*"
gas = GAS (ACCESS_KEY)

Create Fusion Dataset

Then, create a fusion dataset client by passing the fusion dataset name and is_ fusion argument to the GAS client.

gas.create_dataset ("CADC", is_fusion=True)

List Dataset Names

To check if you have created “CADC” fusion dataset, you can list all your available datasets. See this page for details.

The datasets listed here include both datasets and fusion datasets.

list (gas.list_dataset_names())

Note: Note that method 1ist_dataset_names () returns an iterator, use 1ist () to transfer it to a “list”.

Organize Fusion Dataset

Now we describe how to organize the “CADC” fusion dataset by the FusionDataset object before uploading it to
TensorBay. It takes the following steps to organize “CADC”.

Write the Catalog

The first step is to write the caralog. Catalog is a json file contains all label information of one dataset. See this page
for more details. The only annotation type for “CADC” is Box3D, and there are 10 Category types and 9 Attributes

types.

{

"BOX3D": {

"isTracking": true,

"categories": [
{ "name": "Animal" 1},
{ "name": "Bicycle" 1},
{ "name": "Bus" },
{ "name": "Car" 1},
{ "name": "Garbage_Container_on_Wheels" },
{ "name": "Pedestrian" 1},
{ "name": "Pedestrian_With_Object" },
{ "name": "Traffic_Guidance_Objects" },
{ "name": "Truck" },
{ "name": "Horse and Buggy" }

(continues on next page)

42 Chapter 1. What can TensorBay SDK do?

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

TensorBay

(continued from previous page)

1,
"attributes": |

{

"name": "stationary",
"type": "boolean"
}I
{
"name": "camera_used",
"enum": [0, 1, 2, 3, 4, 5, 6, 7, null]
}I
{
"name": "state",
"enum": ["Moving", "Parked", "Stopped"],
"parentCategories": ["Car", "Truck", "Bus", "Bicycle", "Horse_and_
—Buggy"]
}I
{
"name": "truck_ type",
"enum": [

"Construction_Truck",
"Emergency_Truck",
"Garbage_Truck",
"Pickup_Truck",
"Semi_Truck",
"Snowplow_Truck"

1,

"Standard_School_Bus", "Van_

"Pedestrian_With_Object"]

"parentCategories": ["Truck"]
}I
{
"name": "bus_type",
"enum": ["Coach_Bus", "Transit_Bus",
—School_Bus"],
"parentCategories": ["Bus"]
}I
{
"name": "age",
"enum": ["Adult", "Child"],
"parentCategories": ["Pedestrian",
}I
{
"name": "traffic_guidance_type",
"enum": ["Permanent", "Moveable"],
"parentCategories": ["Traffic Guidance_Objects"]
by
{
"name": "rider_state",
"enum": ["With_ Rider", "Without_Rider"],
"parentCategories": ["Bicycle"]
}I
{
"name": "points_count",
"type": "integer",

"minimum": 0

1.5. Fusion Dataset

43

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

)

43

44

45

46

TensorBay

Note: The annotations for “CADC” have tracking information, hence the value of isTracking should be set as

True.

Write the Dataloader

The second step is to write the dataloader. The dataloader function of “CADC” is to manage all the files and
annotations of “CADC” into a FusionDataset object. The code block below displays the “CADC” dataloader.

#!/usr/bin/env python3

#

Copyright 2021 Graviti. Licensed under MIT License.
#

pylint: disable=invalid-name
"""Dataloader of the CADC dataset."""
import json

import os

from datetime import datetime

from typing import Any, Dict, List

import quaternion

from ...dataset import Data, Frame, FusionDataset
from ...label import LabeledBox3D
from ...sensor import Camera, Lidar, Sensors

from .. utility import glob

DATASET_NAME = "CADC"

def CADC (path: str) -> FusionDataset:
"""Dataloader of the CADC dataset.
Arguments:

path: The root directory of the dataset.
The file structure should be like::

<path>
2018 _03_06/
0001/
3d_ann. json
labeled/
image_00/
data/

0000000000 png
0000000001 . png

timestamps.txt

image_07/
data/
timestamps.txt
lidar_points/

(continues on next page)

44 Chapter 1. What can TensorBay SDK do?

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

90

91

92

93

9%

95

96

97

98

99

100

101

102

TensorBay

(continued from previous page)

data/
timestamps.txt
novatel/
data/
dataformat. txt
timestamps.txt
0018/
calib/

00.yaml

01.yaml

02.yaml

03.yaml

04.yaml

05.yaml

06.yaml

07.yaml

extrinsics.yaml

README. txt

2018 _03_ 07/
2019 _02_27/

Returns:
Loaded ‘FusionDataset' object.

mmn

root_path = os.path.abspath(os.path.expanduser (path))

dataset = FusionDataset (DATASET_NAME)
dataset.notes.is_continuous = True
dataset.load_catalog(os.path.join(os.path.dirname(_ file), "catalog.json"))

for date in os.listdir (root_path):
date_path = os.path.join(root_path, date)

sensors = _load_sensors (os.path.join(date_path, "calib"))
for index in os.listdir (date_path):
if index == "calib":
continue
segment = dataset.create_segment (f" {date//{index /")
segment.sensors = sensors

segment_path = os.path.join(root_path, date, index)
data_path = os.path.join(segment_path, "labeled")

with open(os.path.join (segment_path, "3d_ann.json"), "r") as fp:
The first line of the json file is the json body.
annotations = json.loads (fp.readline())
timestamps = _load_timestamps (sensors, data_path)
for frame_index, annotation in enumerate (annotations):
segment . append (_load_frame (sensors, data_path, frame_index,
—annotation, timestamps))

return dataset

def _load_timestamps (sensors: Sensors, data_path: str) -> Dict[str, List[str]]:
timestamps = {}

(continues on next page)

1.5. Fusion Dataset 45

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

TensorBay

(continued from previous page)

for sensor_name in sensors:
data_folder = f"image_{sensor_name[-2:])" if sensor_name != "LIDAR" else
—"lidar_points"
timestamp_file = os.path.join(data_path, data_folder, "timestamps.txt")
with open(timestamp_file, "r") as fp:
timestamps [sensor_name] = fp.readlines|()

return timestamps

def _load_frame (
sensors: Sensors,
data_path: str,
frame_index: int,
annotation: Dict[str, Any],
timestamps: Dict[str, Listl[str]],
) —> Frame:
frame = Frame ()
for sensor_name in sensors:
The data file name is a string of length 10 with each digit being a number:
0000000000. jpg
0000000001 .bin
data_file_name = f" {frame_index:010/}"

Each line of the timestamps file looks like:
2018-03-06 15:02:33.000000000

timestamp = datetime.fromisoformat (timestamps[sensor_name] [frame_index] [:23]).
—timestamp ()
if sensor_name != "LIDAR":
The image folder corresponds to different cameras, whose name is likes
— "CAMOO".
The image folder looks like "image 00".
camera_folder = f"image_ {sensor_name[-2:] /"
image_file = f"/{data_file_name/.png"
data = Data(
os.path.join(data_path, camera_folder, "data", image_file),
target_remote_path=f" /camera_folder /- {image_file}",
timestamp=timestamp,
)
else:
data = Data(
os.path.join(data_path, "lidar_points", "data", f"{data_file_name).bin
;*") ’
timestamp=timestamp,
)
data.label.box3d = _load_labels (annotation["cuboids"])
frame[sensor_name] = data

return frame

def _load_labels (boxes: List[Dict[str, Any]]) -> List[LabeledBox3D]:
labels = []
for box in boxes:
dimension = box["dimensions"]

position = box["position"]

(continues on next page)

46 Chapter 1. What can TensorBay SDK do?

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

TensorBay

(continued from previous page)

attributes = box["attributes"]

attributes|["stationary"] = box["stationary"]
attributes["camera used"] = box["camera used"]
attributes["points_count"] = box["points_count"]

label = LabeledBox3D (
size=(
dimension["v"], # The "y" dimension is the width from front to back.
dimension["x"], # The "x" dimension is the width from left to right.
dimension["z"],
)l
translation=(
position(["x"], # "x" axis points to the forward facing direction of_
—~the object.
position["y"1, # "y" axis points to the left direction of the object.
position["z"],
)l
rotation=quaternion.from_rotation_vector ((0, 0, box["vaw"]l)),
category=box["label"],
attributes=attributes,
instance=box["uuid"],
)
labels.append(label)

return labels
def _load_sensors(calib_path: str) —-> Sensors:
import yaml # pylint: disable=import-outside-toplevel
sensors = Sensors ()
lidar = Lidar ("LIDAR")
lidar.set_extrinsics ()

sensors.add(lidar)

with open (os.path.join(calib_path, "extrinsics.yaml"), "r") as fp:
extrinsics = yaml.load(fp, Loader=yaml.FullLoader)

for camera_calibration_file in glob(os.path.join(calib_path, "[0-9]*x.yaml")):
with open(camera_calibration_file, "r") as fp:
camera_calibration = yaml.load(fp, Loader=yaml.FullLoader)

camera_calibration _file looks like:
/path-to-CADC/2018 03 06/calib/00.yaml

camera_name = f"CAM/os.path.splitext (os.path.basename (camera_calibration_
—~file)) [0] "

camera = Camera (camera_name)

camera.description = camera_calibration["camera_name"]

camera.set_extrinsics (matrix=extrinsics[f"T LIDAR_ {camera_name/"])

camera_matrix = camera_calibration["camera matrix"] ["data"]
camera.set_camera_matrix (matrix=[camera_matrix[:3], camera_matrix[3:6],
—camera_matrix([6:9]])

(continues on next page)

1.5. Fusion Dataset 47

210

211

212

213

TensorBay

(continued from previous page)

distortion = camera_calibration["distortion coefficients"] ["data"]
camera.set_distortion_coefficients (xxdict (zip (("k1", "k2", "pl", "p2", "k3")
—distortion)))

[

sensors.add (camera)
return sensors

create a fusion dataset

To load a fusion dataset, we first need to create an instance of FusionDataset.(L75)

Note that after creating the fusion dataset, you need to set the i s_continuous attribute of notes to True,(L76)
since the frames in each fusion segment is time-continuous.

load the catalog

Same as dataset, you also need to load the catalog.(L77) The catalog file “catalog.json” is in the same directory with
dataloader file.

create fusion segments

In this example, we create fusion segments by dataset.create_segment (SEGMENT_NAME) .(L86) We man-
age the data under the subfolder(L33) of the date folder(L32) into a fusion segment and combine two folder names to
form a segment name, which is to ensure that frames in each segment are continuous.

add sensors to fusion segments

After constructing the fusion segment, the sensors corresponding to different data should be added to the fusion
segment.(L87)

In “CADC” , there is a need for projection, so we need not only the name for each sensor, but also the calibration
parameters.

And to manage all the Sensors (L81, L183) corresponding to different data, the parameters from calibration files
are extracted.

Lidar sensor only has extrinsics, here we regard the lidar as the origin of the point cloud 3D coordinate system,
and set the extrinsics as defaults(LL.189).

To keep the projection relationship between sensors, we set the transform from the camera 3D coordinate system to
the lidar 3D coordinate system as Came ra extrinsics(L205).

Besides extrinsics (), Camera sensor also has intrinsics (), which are used to project 3D points to 2D
pixels.

The intrinsics consist of two parts, CameraMatrix and DistortionCoefficients.(L208-L211)

48 Chapter 1. What can TensorBay SDK do?

https://en.wikipedia.org/wiki/3D_projection

TensorBay

add frames to segment

After adding the sensors to the fusion segments, the frames should be added into the continuous segment in order(L.96).

Each frame contains the data corresponding to each sensor, and each data should be added to the frame under the key
of sensor name(LL147).

In fusion datasets, it is common that not all data have labels. In “CADC”, only point cloud files(Lidar data) have
Box3D type of labels(L145). See this page for more details about Box3D annotation details.

Note: The CADC dataloader above uses relative import(L16-L.19). However, when you write your own dataloader
you should use regular import. And when you want to contribute your own dataloader, remember to use relative
import.

Upload Fusion Dataset

After you finish the dataloader and organize the “CADC” into a FusionDataset object, you can upload it to
TensorBay for sharing, reuse, etc.

fusion_dataset is the one you initialized in "Organize Fusion Dataset" section
fusion_dataset_client = gas.upload_dataset (fusion_dataset, Jjobs=8, skip_uploaded_
—~files=False)

fusion_dataset_client.commit ("CADC")

Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see
this page for more details about version control.

Note: Commit operation can also be done on our GAS Platform.

Read Fusion Dataset

Now you can read “CADC” dataset from TensorBay.

fusion_dataset_client = gas.get_dataset ("CADC", is_fusion=True)

In dataset “CADC”, there are lots of FusionSegments: 2018_03_06/0001,2018_03_07/0001,...
You can get the segment names by list them all.

You can get a segment by passing the required segment name.

from tensorbay.dataset import FusionSegment

fusion_segment = FusionSegment ("2018_03_06/0001", fusion_dataset_client)

132

Note: If the segment or fusion segment is created without given name, then its name will be “”.

In the 2018_03_06/0001 fusion segment, there are several sensors. You can get all the sensors by accessing the
sensors of the FusionSegment.

1.5. Fusion Dataset 49

https://www.graviti.cn/tensorBay

TensorBay

sensors = fusion_segment.sensors

In each fusion segment, there are a sequence of frames. You can get one by index.

’frame = fusion_segment [0]

In each frame, there are several data corresponding to different sensors. You can get each data by the corresponding
sensor name.

for sensor_name in sensors:
data = frame[sensor_name]

In “CADC”, only data under Lidar has a sequence of Box3D annotations. You can get one by index.

lidar_data = frame["LIDAR"]

label box3d = lidar_data.label.box3d[0]
category = label _box3d.category
attributes = label_box3d.attributes

There is only one label type in “CADC” dataset, which is box3d. The information stored in Category is one of the
category names in “categories’ list of catalog.json. The information stored in Attributes is some of the attributes in
“attributes” list of catalog.json.

See this page for more details about the structure of Box3D.

Delete Fusion Dataset

To delete “CADC”, run the following code:

’gas.delete_dataset(“CADC")

1.6 Getting Started with CLI

The TensorBay Command Line Interface is a tool to operate on your datasets. It supports Windows, Linux, and Mac
platforms.

You can use TensorBay CLI to:
* Create and delete dataset.
* List data, segments and datasets on TensorBay.

* Upload data to TensorBay.

1.6.1 Installation

To use TensorBay CLI, please install TensorBay SDK first.

$ pip3 install tensorbay

50 Chapter 1. What can TensorBay SDK do?

TensorBay

1.6.2 TBRN

TensorBay Resource Name(TBRN) uniquely defines the data stored in TensorBay. TBRN begins with tb:. Default
segment can be defined as """ (empty string). The following is the general format for TBRN:

tb: [dataset_name]: [segment_name]://[remote_path]

1.6.3 Configuration

Use the command below to configure the accessKey.

’$ gas config [accessKey]

AccessKey is used for identification when using TensorBay to operate on your dataset.

You can set the accessKey into configuration:

’$ gas config Accesskey—#*x%x

To show configuration information:

’$ gas config

1.7 Dataset Management

TensorBay CLI offers following sub-commands to manage your dataset. (Table. 1.3)

Table 1.3: Sub-Commands

Sub-Commands | Description

create Create a dataset

Is List data, segments and datasets
delete Delete a dataset

1.7.1 Create dataset

The basic structure of the sub-command to create a dataset with given name:

$ gas create [tbrn]

tbrn:
thb: [dataset_name]

Take BSTLD for example:

$ gas create tb:BSTLD

1.7. Dataset Management 51

https://gas.graviti.cn/tensorbay/developer
https://gas.graviti.cn/dataset/data-decorators/BSTLD

TensorBay

1.7.2 Read Dataset

The basic structure of the sub-command to List data, segments and datasets:

$ gas 1ls [Options] [tbrn]

Options:

-a, ——all List all files under all segments.

Only works when [tbrn] is tb:[dataset_name].

tbrn:

None

tb: [dataset_name]

tb: [dataset_name]: [segment_name]

tb: [dataset_name]: [segment_name] ://[remote_path]

If the path is empty, list the names of all datasets. You can list data in the following ways:

1. List the names of all datasets.

$ gas 1ls

2. List the names of all segments of BSTLD.

$ gas 1ls tb:BSTLD

3. List all the files in all the segments of BSTLD.

$ gas 1ls —a tb:BSTLD

4. List all the files in the t rain segment of BSTLD.

$ gas ls tb:BSTLD:train

52 Chapter 1. What can TensorBay SDK do?

https://gas.graviti.cn/dataset/data-decorators/BSTLD
https://gas.graviti.cn/dataset/data-decorators/BSTLD
https://gas.graviti.cn/dataset/data-decorators/BSTLD

TensorBay

1.7.3 Delete Dataset

The basic structure of the sub-command to delete the dataset with given name:

$ gas delete [tbrn]

tbrn:
tb: [dataset_name]

Take BSTLD for example:

’$ gas delete tb:BSTLD

1.8 Glossary

1.8.1 accesskey

An accesskey is an access credential for identification when using TensorBay to operate on your dataset.
To obtain an accesskey, you need to log in to Graviti Al Service(GAS) and visit the developer page to create one.

For the usage of accesskey via Tensorbay SDK or CLI, please see SDK authorization or CLI configration.

1.8.2 dataset

A uniform dataset format defined by TensorBay, which only contains one type of data collected from one sensor or
without sensor information. According to the time continuity of data inside the dataset, a dataset can be a discontinuous
dataset or a continuous dataset. Notes can be used to specify whether a dataset is continuous.

The corresponding class of dataset is Dataset.

See Dataset Structure for more details.

1.8.3 fusion dataset

A uniform dataset format defined by Tensorbay, which contains data collected from multiple sensors.

According to the time continuity of data inside the dataset, a fusion dataset can be a discontinuous fusion dataset or a
continuous fusion dataset. Nofes can be used to specify whether a fusion dataset is continuous.

The corresponding class of fusion dataset is FusionDataset.

See Fusion Dataset Structure for more details.

1.8. Glossary 53

https://gas.graviti.cn/dataset/data-decorators/BSTLD
https://www.graviti.cn/tensorBay
https://gas.graviti.cn/tensorbay/developer

TensorBay

1.8.4 dataloader

A function that can organize files within a formatted folder into a Dataset instance or a FusionDataset instance.

The only input of the function should be a str indicating the path to the folder containing the dataset, and the return
value should be the loaded Dataset or FusionDataset instance.

Here are some dataloader examples of datasets with different label types and continuity(Table. 1.4).

Table 1.4: Dataloaders

Dataloaders Description
LISA Traffic Light Dataloader

This example is the dataloader of LISA Traffic Light
Dataset,

which is a continuous dataset with Box2D label.

Dogs vs Cats Dataloader

This example is the dataloader of Dogs vs Cats Dataset,
which is a dataset with Classification label.

BSTLD Dataloader

This example is the dataloader of BSTLD Dataset,
which is a dataset with Box2D label.

Neolix OD Dataloader

This example is the dataloader of Neolix OD Dataset,
which is a dataset with Box3D label.

Leeds Sports Pose Daraloader

This example is the dataloader of Leeds Sports Pose
Dataset,

which is a dataset with Keypoints2D label.

Note: The name of the dataloader function is a unique indentification of the dataset. It is in upper camel case and is
generally obtained by removing special characters from the dataset name.

Take Dogs vs Cats dataset as an example, the name of its dataloader function is DogsVsCats ().

See more dataloader examples in fensorbay.opendataset.

54 Chapter 1. What can TensorBay SDK do?

https://github.com/Graviti-AI/tensorbay-python-sdk/blob/main/tensorbay/opendataset/LISATrafficLight/loader.py
https://gas.graviti.cn/dataset/hello-dataset/LISATrafficLight
https://gas.graviti.cn/dataset/hello-dataset/LISATrafficLight
https://github.com/Graviti-AI/tensorbay-python-sdk/blob/main/tensorbay/opendataset/DogsVsCats/loader.py
https://gas.graviti.cn/dataset/data-decorators/DogsVsCats
https://github.com/Graviti-AI/tensorbay-python-sdk/blob/main/tensorbay/opendataset/BSTLD/loader.py
https://gas.graviti.cn/dataset/data-decorators/BSTLD
https://github.com/Graviti-AI/tensorbay-python-sdk/blob/main/tensorbay/opendataset/NeolixOD/loader.py
https://gas.graviti.cn/dataset/graviti-open-dataset/NeolixOD
https://github.com/Graviti-AI/tensorbay-python-sdk/blob/main/tensorbay/opendataset/LeedsSportsPose/loader.py
https://gas.graviti.cn/dataset/data-decorators/LeedsSportsPose
https://gas.graviti.cn/dataset/data-decorators/LeedsSportsPose
https://gas.graviti.cn/dataset/data-decorators/DogsVsCats

TensorBay

1.8.5 TBRN

TBRN is the abbreviation for TensorBay Resource Name, which represents the data or a collection of data stored in
TensorBay uniquely.

Note that TBRN is only used in CLI.
TBRN begins with tb:, followed by the dataset name, the segment name and the file name.

The following is the general format for TBRN:

’tb:[dataset_name]:[segment_name]://[remote_path]

Suppose we have an image 000000 . jpg under the default segment of a dataset named example, then we have the
TBRN of this image:

’tb:example:://OOOOOO.jpg

Note: Default segment is defined as " " (empty string).

1.8.6 commit
Similar with Git, a commit is a version of a dataset, which contains the changes compared with the former commit.
You can view a certain commit of a dataset based on the given commit ID.

A commit is readable, but is not writable. Thus, only read operations such as getting catalog, files and labels are
allowed. To change a dataset, please create a new commit. See draft for details.

On the other hand, “commit” also represents the action to save the changes inside a draft into a commit.

1.8.7 draft

Similar with Git, a draft is a workspace in which changing the dataset is allowed.
A draft is created based on a commit, and the changes inside it will be made into a commit.

There are scenarios when modifications of a dataset are required, such as correcting errors, enlarging dataset, adding
more types of labels, etc. Under these circumstances, you can create a draft, edit the dataset and commit the draft.

1.9 Dataset Structure

For ease of use, TensorBay defines a uniform dataset format. In this topic, we explain the related concepts. The
TensorBay dataset format looks like:

dataset
—— notes
— catalog

subcatalog
subcatalog

— segment

data
data

(continues on next page)

1.9. Dataset Structure 55

TensorBay

(continued from previous page)

segment

data
data

1.9.1 dataset
Dataset is the topmost concept in TensorBay dataset format. Each dataset includes a catalog and a certain number of
segments.

The corresponding class of dataset is Dataset.

1.9.2 notes

Notes contains the basic information of a dataset, such as the time continuity of the data inside the dataset.

The corresponding class of notes is Notes

1.9.3 catalog

Catalog is used for storing label meta information. It collects all the labels corresponding to a dataset. There could be
one or several subcatalogs (Label Format) under one catalog. Each Subcatalog only stores label meta information of
one label type, including whether the corresponding annotation has tracking information.

Here are some catalog examples of datasets with different label types and a dataset with tracking annotations(Table.
1.5).

56 Chapter 1. What can TensorBay SDK do?

TensorBay

Table 1.5: Catalogs

Catalogs Description
elpv Catalog

This example is the catalog of elpv Dataset,
which is a dataset with Classification label.

BSTLD Catalog

This example is the catalog of BSTLD Dataset,
which is a dataset with Box2D label.

Neolix OD Catalog

This example is the catalog of Neolix OD Dataset,
which is a dataset with Box3D label.

Leeds Sports Pose Catalog

This example is the catalog of Leeds Sports Pose
Dataset,

which is a dataset with Keypoinzs2D label.

NightOwls Catalog

This example is the catalog of NightOwls Dataset,
which is a dataset with tracking Box2D label.

Note that catalog is not needed if there is no label information in a dataset.

1.9.4 segment

There may be several parts in a dataset. In TensorBay format, each part of the dataset is stored in one segment. For
example, all training samples of a dataset can be organized in a segment named “train”.

The corresponding class of segment is Segment.

1.9. Dataset Structure 57

https://github.com/Graviti-AI/tensorbay-python-sdk/blob/main/tensorbay/opendataset/Elpv/catalog.json
https://gas.graviti.cn/dataset/data-decorators/Elpv
https://github.com/Graviti-AI/tensorbay-python-sdk/blob/main/tensorbay/opendataset/BSTLD/catalog.json
https://gas.graviti.cn/dataset/data-decorators/BSTLD
https://github.com/Graviti-AI/tensorbay-python-sdk/blob/main/tensorbay/opendataset/NeolixOD/catalog.json
https://gas.graviti.cn/dataset/graviti-open-dataset/NeolixOD
https://github.com/Graviti-AI/tensorbay-python-sdk/blob/main/tensorbay/opendataset/LeedsSportsPose/catalog.json
https://gas.graviti.cn/dataset/data-decorators/LeedsSportsPose
https://gas.graviti.cn/dataset/data-decorators/LeedsSportsPose
https://github.com/Graviti-AI/tensorbay-python-sdk/blob/main/tensorbay/opendataset/NightOwls/catalog.json
https://gas.graviti.cn/dataset/hello-dataset/NightOwls

TensorBay

1.9.5 data

Data is the structural level next to segment. One data contains one dataset sample and its related labels, as well as any
other information such as timestamp.

The corresponding class of data is Dat a.

1.10 Label Format

TensorBay supports multiple types of labels.
Each Data object can have multiple types of 1abel.

And each type of 1abel is supported with a specific label class, and has a corresponding subcatalog class.

Table 1.6: supported label types

supported label types | label classes subcatalog classes

Classification Classification ClassificationSubcatalog
Box2D LabeledBox2D Box2DSubcatalog

Box3D LabeledBox3D Box3DSubcatalog
Keypoints2D LabeledKeypoints2D | KeypointsZDSubcatalog
Sentence LabeledSentence SetenceSubcatalog

1.10.1 Common Label Properties

Different types of labels contain differenct aspects of annotation information about the data. Some are more general,
and some are unique to a specific label type.

We first introduce three common properties of a label, and the unique ones will be explained under the corresponding
type of label.

Here we take a 2D box label as an example:

>>> from tensorbay.label import LabeledBox2D

>>> label = LabeledBox2D (
10, 20, 30, 40,
category="category",
attributes={"attribute_name": "attribute_value"},
instance="instance_ID"
)

>>> label

LabeledBox2D (10, 20, 30, 40) (

(category) : 'category',
(attributes): {...},
(instance) : 'instance_1ID'

58 Chapter 1. What can TensorBay SDK do?

TensorBay

Category

Category is a string indicating the class of the labeled object.

>>> label.category
'data_category'

Attributes

Attributes are the additional information about this data, and there is no limit on the number of attributes.

The attribute names and values are stored in key-value pairs.

>>> label.attributes
{'attribute_name': 'attribute_value'}

Instance

Instance is the unique id for the object inside of the label, which is mostly used for tracking tasks.

>>> label.instance
"instance_ID"

1.10.2 Common Subcatalog Properties

Before creating a label or adding a label to data, you need to define the annotation rules of the specific label type inside
the dataset, which is subcatalog.

Different label types have different subcatalog classes.

Here we take Box2DSubcatalog as an example to describe some common features of subcatalog.

>>> from tensorbay.label import Box2DSubcatalog
>>> box2d_subcatalog = Box2DSubcatalog(is_tracking=True)
>>> box2d_subcatalog
Box2DSubcatalog (
(is_tracking): True

Trackinglnformation
If the label of this type in the dataset has the information of instance IDs, then the subcatalog should set a flag to show
its support for tracking information.

You can pass True to the is_t racking parameter while creating the subcatalog, or you can setthe is_tracking
attr after initialization.

>>> box2d_subcatalog.is_tracking = True

1.10. Label Format 59

TensorBay

Categorylnformation

If the label of this type in the dataset has category, then the subcatalog should contain all the optional categories.
Each category of a label appeared in the dataset should be within the categories of the subcatalog.

You can add category information to the subcatalog.

>>> box2d_subcatalog.add_category (name="cat", description="The Flerken")
>>> box2d_subcatalog.categories
NameOrderedDict {

'cat': CategoryInfo("cat")

We use CategoryInfo todescribe a category. See details in CategoryInfo.

Attributesinformation

If the label of this type in the dataset has attributes, then the subcatalog should contain all the rules for different
attributes.

Each attribute of a label appeared in the dataset should follow the rules set in the attributes of the subcatalog.

You can add attribute information to the subcatalog.

>>> box2d_subcatalog.add_attribute(
name="attribute_name",
type_="number",
maximum=100,
minimum=0,
description="attribute description”
)
>>> box2d_subcatalog.attributes
NameOrderedDict
'attribute_name': AttributeInfo("attribute_name") (...)

We use AttributelInfo to describe the rules of an artribute, which refers to the Json schema method.
See details in At t ributeInfo.

Other unique subcatalog features will be explained in the corresponding label type section.

1.10.3 Classification

Classification is to classify data into different categories.
It is the annotation for the entire file, so each data can only be assigned with one classification label.
Classification labels applies to different types of data, such as images and texts.

The structure of one classification label is like:

{
"category": <str>
"attributes": {
<key>: <value>

(continues on next page)

60 Chapter 1. What can TensorBay SDK do?

https://json-schema.org/

TensorBay

(continued from previous page)

To create a Classification label:

>>> from tensorbay.label import Classification
>>> classification_label = Classification
category="data_category",
attributes={"attribute name": "attribute_ value"}
)
>>> classification_label
Classification(
(category) : 'data_category',
(attributes): {...}

Classification.Category

The category of the entire data file. See Category for details.

Classification.Attributes

The attributes of the entire data file. See Artributes for details.

Note: There must be either a category or attributes in one classification label.

ClassificationSubcatalog

Before adding the classification label to data, ClassificationSubcatalog should be defined.

ClassificationSubcatalog has categories and attributes information, see Categorylnformation and At-
tributesinformation for details.

Toadd a Classification label to one data:

>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.classification = classification_label

Note: One data can only have one classification label.

1.10. Label Format 61

TensorBay

1.10.4 Box2D

Box2D is a type of label with a 2D bounding box on an image. It’s usually used for object detection task.
Each data can be assigned with multiple Box2D label.

The structure of one Box2D label is like:

{

"box2d": {
"xmin": <float>
"ymin": <float>
"xmax": <float>
"ymax": <float>

}I

"category": <str>

"attributes": {
<key>: <value>

by

"instance": <str>

To create a LabeledBox2D label:

>>> from tensorbay.label import LabeledBox2D

>>> box2d_label = LabeledBox2D (
xmin, ymin, xmax, ymax,
category="category",
attributes={"attribute_name": "attribute_value"},
instance="instance_ID"

L)

>>> box2d_label

LabeledBox2D (xmin, ymin, xmax, ymax) (

(category) : 'category',
(attributes): {...}
(instance) : 'instance_ID'

Box2D.box2d

LabeledBox2D extends Box2D.

To construct a LabeledBox2D instance with only the geometry information, you can use the coordinates of the
top-left and bottom-right vertexes of the 2D bounding box, or you can use the coordinate of the top-left vertex, the
height and the width of the bounding box.

>>> LabeledBox2D (10, 20, 30, 40)

LabeledBox2D (10, 20, 30, 40) ()

>>> LabeledBox2D (x=10, y=20, width=20, height=20)
LabeledBox2D (10, 20, 30, 40) ()

It contains the basic geometry information of the 2D bounding box.

>>> box2d_label.xmin
10

(continues on next page)

62 Chapter 1. What can TensorBay SDK do?

TensorBay

(continued from previous page)

>>> box2d_label.ymin
20

>>> box2d_label.xmax
30

>>> box2d_label.ymax
40

>>> box2d_label.br
Vector2D (30, 40)

>>> box2d_label.tl
Vector2D (10, 20)

>>> box2d_label.area()
400

Box2D.Category

The category of the object inside the 2D bounding box. See Category for details.

Box2D.Attributes

Attributes are the additional information about this object, which are stored in key-value pairs. See Attributes for
details.

Box2D.Instance

Instance is the unique ID for the object inside of the 2D bounding box, which is mostly used for tracking tasks. See
Instance for details.

Box2DSubcatalog

Before adding the Box2D labels to data, Box2DSubcatalog should be defined.

Box2DSubcatalog has categories, attributes and tracking information, see Categorylnformation, Attributeslnfor-
mation and TrackingInformation for details.

To add a LabeledBox2D label to one data:

>>> from tensorbay.dataset import Data
>>> data = Data("local_path™)

>>> data.label.box2d = []

>>> data.label.box2d.append (box2d_label)

Note: One data may contain multiple Box2D labels, so the Data.label .box2d must be a list.

1.10. Label Format 63

TensorBay

1.10.5 Box3D

Box3D is a type of label with a 3D bounding box on point cloud, which is often used for 3D object detection.
Currently, Box3D labels applies to point data only.
Each point cloud can be assigned with multiple Box3D label.

The structure of one Box3D label is like:

"box3d": {
"translation": {
"x": <float>
"y": <float>
"z": <float>
}I
"rotation": {
"w": <float>
"x": <float>
"y": <float>
"z": <float>
}I
"size": {
"x": <float>
"y": <float>
"z": <float>
}
}I
"category": <str>

"attributes": {
<key>: <value>

by

"instance": <str>

To create a LabeledBox3D label:

>>> from tensorbay.label import LabeledBox3D
>>> box3d_label = LabeledBox3D (
size=[10, 20, 301,
translation=[0, 0, 01,
rotation=[1, O, 0, 07,
category="category",
attributes={"attribute_name": "attribute_value"},
instance="instance_ID"
cee)
>>> box3d_label
LabeledBox3D (

(size): Vector3D(10, 20, 30),

(translation): Vector3D (0, 0, 0),

(rotation): quaternion(1.0, 0.0, 0.0, 0.0),
(category) : 'category',
(
(

attributes): {...},
instance) : 'instance_ID'

64 Chapter 1. What can TensorBay SDK do?

TensorBay

Box3D.box3d

LabeledBox3D extends Box3D.

To construct a LabeledBox3D instance with only the geometry information, you can use the transform matrix and
the size of the 3D bounding box, or you can use translation and rotation to represent the transform of the 3D bounding
box.

>>> LabeledBox3D (
size=[10, 20, 307,
transform_matrix=([(1, O, O, O], (O, 1, O, O], [O, O, 1, 011,
o)
LabeledBox3D (
(size): Vector3D (10, 20, 30)
(translation): Vector3D (0, 0, 0),
(rotation): quaternion(l1.0, -0.0, -0.0, -0.0),
)
>>> LabeledBox3D (
size=[10, 20, 30],
translation=[0, 0, 0],
rotation=[1, O, 0, 07,
o)
LabeledBox3D (
(size): Vector3D (10, 20, 30)
(translation): Vector3D (0, 0, 0),
(rotation): quaternion(1.0, 0.0, 0.0, 0.0),

It contains the basic geometry information of the 3D bounding box.

>>> box3d_label.transform
Transform3D (
(translation): Vector3D (0, 0, 0),
(rotation): gquaternion(l.0, 0.0, 0.0, 0.0)
)
>>> pbox3d_label.translation
Vector3D (0, 0, 0)
>>> box3d_label.rotation
quaternion(1.0, 0.0, 0.0, 0.0)
>>> box3d_label.size
Vector3D (10, 20, 30)
>>> box3d_label.volumn ()
6000

1.10. Label Format 65

TensorBay

Box3D.Category

The category of the object inside the 3D bounding box. See Category for details.

Box3D.Attributes

Attributes are the additional information about this object, which are stored in key-value pairs. See Aftributes for
details.

Box3D.Instance

Instance is the unique id for the object inside of the 3D bounding box, which is mostly used for tracking tasks. See
Instance for details.

Box3DSubcatalog

Before adding the Box3D labels to data, Box3DSubcatalog should be defined.

Box3DSubcatalog has categories, attributes and tracking information, see Categorylnformation, Attributeslnfor-
mation and TrackingInformation for details.

To add a LabeledBox3D label to one data:

>>> from tensorbay.dataset import Data
>>> data = Data("local_path™)

>>> data.label.box3d = []

>>> data.label.box3d.append (box3d_label)

Note: One data may contain multiple Box3D labels, so the Data.label.box3d must be a list.

1.10.6 Keypoints2D

Keypoints2D is a type of label with a set of 2D keypoints. It is often used for animal and human pose estimation.
Keypoints2D labels mostly applies to images.
Each data can be assigned with multiple Keypoints2D labels.

The structure of one Keypoints2D label is like:

{
"keypoints2d": [

{ "x": <float>
"y": <float>
"y": <int>
}I
]I
"category": <str>

"attributes": {
<key>: <value>

(continues on next page)

66 Chapter 1. What can TensorBay SDK do?

TensorBay

(continued from previous page)

by

"instance": <str>

To create a LabeledKeypoints2D label:

>>> from tensorbay.label import LabeledKeypoints2D
>>> keypoints2d_label = LabeledKeypoints2D (
[[10, 20], [15, 251, [20, 3011,
category="category",
attributes={"attribute_name": "attribute_value"},
instance="instance_ID"
cee)
>>> keypoints2d_label
LabeledKeypoints2D [
Keypoint2D (10, 20),
Keypoint2D (15, 25),
Keypoint2D (20, 30)
1

(category): 'category',
(attributes): {...},
(instance) : 'instance_1ID'

Keypoints2D.keypoints2d

LabeledKeypointsZ2D extends Keypoints2D.

To construct a LabeledKeypoints2D instance with only the geometry information, you need the coordinates of
the set of 2D keypoints. You can also add the visible status of each 2D keypoint.

>>> LabeledKeypoints2D([[10, 20], [15, 25], [20, 30]1])
LabeledKeypoints2D [

Keypoint2D (10, 20),

Keypoint2D (15, 25),

Keypoint2D (20, 30)
10
>>> LabeledKeypoints2D([[10, 20, 0], [15, 25, 11, [20, 30, 111)
LabeledKeypoints2D [

Keypoint2D (10, 20, 0),

Keypoint2D (15, 25, 1),

Keypoint2D (20, 30, 1)
10

It contains the basic geometry information of the 2D keypoints. And you can access the keypoints by index.

>>> keypoints2d_label[0]
Keypoint2D (10, 20)

1.10. Label Format 67

TensorBay

Keypoints2D.Category

The category of the object inside the 2D keypoints. See Category for details.

Keypoints2D.Attributes

Attributes are the additional information about this object, which are stored in key-value pairs. See Aftributes for
details.

Keypoints2D.Instance

Instance is the unique ID for the object inside of the 2D keypoints, which is mostly used for tracking tasks. See
Instance for details.

Keypoints2DSubcatalog

Before adding 2D keypoints labels to the dataset, Keypoints2DSubcatalog should be defined.

Besides AttributesInformation, Categorylnformation, TrackingInformation in Keypoints2DSubcatalog, it also
has keypoints to describe a set of keypoints corresponding to certain categories.

>>> from tensorbay.label import Keypoints2DSubcatalog
>>> keypoints2d_subcatalog = Keypoints2DSubcatalog()
>>> keypoints2d_subcatalog.add_keypoints (

3/

names=["head", "body", "feet"],

skeleton=[[0, 11, [1, 211,

visible="BINARY",

. parent_categories=["cat"],

description="keypoints of cats"

)
>>> keypoints2d_subcatalog.keypoints

[KeypointsInfo (
(number) : 3,
(names) : [...],
(skeleton): [...],
(visible) : 'BINARY',
(parent_categories): [...]

)]

We use KeypointsInfo todescribe a set of 2D keypoints.
The first parameter of add_keypoints () is the number of the set of 2D keypoints, which is required.

The names is a list of string representing the names for each 2D keypoint, the length of which is consistent with the
number.

The skeleton is a two-dimensional list indicating the connection between the keypoints.

The visible is the visible status that limits the v of Keypoint2D. It can only be “BINARY” or “TERNARY™.
See details in Keypoint2D.

The parent_categories is a list of categories indicating to which category the keypoints rule applies.

Mostly, parent_categories is not given, which means the keypoints rule applies to all the categories of the entire
dataset.

68 Chapter 1. What can TensorBay SDK do?

TensorBay

To add a LabeledKeypoints2D label to one data:

>>> from tensorbay.dataset import Data

>>> data = Data("local_path")

>>> data.label.keypoints2d = []

>>> data.label.keypoints2d.append (keypoints2d_label)

Note: One data may contain multiple Keypoints2D labels, so the Data.label.keypoints2d must be a list.

1.10.7 Sentence

Sentence label is the transcripted sentence of a piece of audio, which is often used for autonomous speech recognition.
Each audio can be assigned with multiple sentence labels.

The structure of one sentence label is like:

{

"sentence": [
{
"text": <str>
"begin": <float>
"end": <float>
}
]I
"spell": [
{
"text": <str>
"begin": <float>
"end": <float>
}
]I
"phone": [
{
"text": <str>
"begin": <float>
"end": <float>

1,
"attributes": {
<key>: <value>,

To create a LabeledSentence label:

1.10. Label Format 69

TensorBay

>>> from tensorbay.label import LabeledSentence
>>> from tensorbay.label import Word

>>> sentence_label = LabeledSentence (

sentence=[Word ("text", 1.1, 1.6)1],
spell=[Word("spell", 1.1, 1.6)1,
phone=[Word ("phone", 1.1, 1.6)],

attributes={"attribute name'":

)

>>> sentence_label

LabeledSentence (
(sentence) : [
Word (
(text): 'text',
(begin): 1.1,
(end): 1.6
)
]I
(spell): [
Word (
(text): 'text',
(begin): 1.1,
(end): 1.6
)
]I
(phone) : [
Word (
(text): 'text',
(begin): 1.1,
(end): 1.6

)
1,
(attributes) : {

'attribute_name': 'attribute_value'

"attribute_value"}

Sentence.sentence

The sentence of a LabeledSentence is alist of Word, representing the transcripted sentence of the audio.

Sentence.spell

The spellofa LabeledSentenceis alist of Word, representing the spell within the sentence.

It is only for Chinese language.

70

Chapter 1. What can TensorBay SDK do?

TensorBay

Sentence.phone

The phone of a LabeledSentenceis alist of Word, representing the phone of the sentence label.

Word

Word is the basic component of a phonetic transcription sentence, containing the content of the word, the start and the
end time in the audio.

>>> from tensorbay.label import Word
>>> Word ("text", 1.1, 1.6)

Word (
(text): 'text',
(begin): 1,
(end): 2

sentence, spell, and phone of a sentence label all compose of Word.

Sentence.Attributes

The attributes of the transcripted sentence. See Attributesinformation for details.

SentenceSubcatalog

Before adding sentence labels to the dataset, SetenceSubcatalog should be defined.

Besides Attributesinformation in SetenceSubcatalog,italsohas is_sample, sample_rate and lexicon.
to describe the transcripted sentences of the audio.

>>> from tensorbay.label import SentenceSubcatalog

>>> sentence_subcatalog = SentenceSubcatalog(
is_sample=True,
sample_rate=5,
lexicon=[["word", "spell", "phone"]]

L)
>>> sentence_subcatalog
SentenceSubcatalog(

(is_sample): True,
(sample_rate): 5,
(lexicon): [...]

)
>>> sentence_subcatalog.lexicon

[['word', 'spell', 'phone']]

The is_sample is a boolen value indicating whether time format is sample related.

The sample_rate is the number of samples of audio carried per second. If is_sample is Ture, then
sample_rate must be provided.

The lexicon is a list consists all of text and phone.

Besides giving the parameters while initialing SetenceSubcatalog, you can set them after intialization.

1.10. Label Format 71

TensorBay

>>> from tensorbay.label import SentenceSubcatalog

>>> sentence_subcatalog = SentenceSubcatalog()

>>> sentence_subcatalog.is_sample = True

>>> sentence_subcatalog.sample_rate = 5

>>> sentence_subcatalog.append_lexicon(["text", "spell", "phone"])
>>> sentence_subcatalog

SentenceSubcatalog (

(is_sample): True,
(sample_rate): 5,
(lexicon): [...]

To add a LabeledSentence label to one data:

>>> from tensorbay.dataset import Data

>>> data = Data("local_path™)

>>> data.label.sentence = []

>>> data.label.sentence.append (sentence_label)

Note: One data may contain multiple Sentence labels, so the Data.label.sentence must be a list.

1.11 API Reference

1.11.1 tensorbay.client

tensorbay.client.cli

Command-line interface.

Use ‘gas’ + COMMAND in terminal to operate on datasets.
Use ‘gas config’ to configure environment.

Use ‘gas create’ to create a dataset.

Use ‘gas delete’ to delete a dataset.

Use ‘gas Is’ to list data.

Use ‘gas cp’ to upload data.

Use ‘gas rm’ to delete data.

tensorbay.client.dataset

Class DatasetClientBase, DatasetClient and FusionDatasetClient.

DatasetClient is a remote concept. It contains the information needed for determining a unique dataset on
TensorBay, and provides a series of methods within dataset scope, such as DatasetClient.get_segment (),
DatasetClient.list_segment_names (), DatasetClient.commit, and so on. In contrast to the
DatasetClient, Dataset is alocal concept. It represents a dataset created locally. Please refer to Dataset for
more information.

Similar to the DatasetClient,the FusionDatasetClient represents the fusion dataset on TensorBay, and its
local counterpart is FusionDataset. Please refer to FusionDataset for more information.

72 Chapter 1. What can TensorBay SDK do?

TensorBay

class tensorbay.client.dataset.DatasetClient (name: str, dataset_id: str, gas_client: GAS,

* commit_id: Optional[str] = None)
Bases: tensorbay.client.dataset.DatasetClientBase

This class defines DatasetClient.

DatasetClient inherits from DataClientBase and provides more methods within a dataset scope,
such as DatasetClient.get_segment (), DatasetClient.commit and DatasetClient.
upload_segment (). In contrastto FusionDatasetClient,a DatasetClient has only one sensor.

create_segment (name: str = ") — tensorbay.client.segment.SegmentClient
Create a segment with the given name.

Parameters name — Segment name, can not be “_default”.
Returns The created SegmentClient with given name.
Raises TypeError — When the segment exists.

get_or_create_segment (name: str = ") — tensorbay.client.segment.SegmentClient
Get or create a segment with the given name.

Parameters name — Segment name, can not be “_default”.
Returns The created SegmentC1ient with given name.

get_segment (name: str = ") — tensorbay.client.segment.SegmentClient
Get a segment in a certain commit according to given name.

Parameters name — The name of the required segment.

Returns ~tensorbay.client.segment.SegmentClient.

Return type The required class

Raises GASSegmentError — When the required segment does not exist.

upload_segment (segment: tensorbay.dataset.segment.Segment, *, jobs: int = 1, skip_uploaded_files:

bool = False) — tensorbay.client.segment.SegmentClient
Upload a Segment to the dataset.

This function will upload all info contains in the input Segment, which includes: - Create a segment
using the name of input Segment. - Upload all Data in the Segment to the dataset.

Parameters
* segment — The Segment contains the information needs to be upload.
* jobs — The number of the max workers in multi-thread uploading method.
* skip_uploaded_files — True for skipping the uploaded files.
Returns
The SegmentClient used for uploading the data in the segment.

class tensorbay.client.dataset .DatasetClientBase (name: str, dataset_id: str, gas_client:
GAS, *, commit_id: Optional[str] =
None)
Bases: object
This class defines the basic concept of the dataset client.

A DatasetClientBase contains the information needed for determining a unique dataset on Ten-
sorBay, and provides a series of method within dataset scope, such as DatasetClientBase.
list_segment_names () and DatasetClientBase.upload catalog().

1.11. API Reference 73

TensorBay

Parameters
* name — Dataset name.
* dataset_id - Dataset ID.
* gas_client — The initial client to interact between local and TensorBay.

checkout (revision: Optional[str] = None, draft_number: Optional[int] = None) — None
Checkout to commit or draft.

Parameters

* revision — The information to locate the specific commit, which can be the commit id,
the branch, or the tag.

* draft_number — The draft number.
Raises TypeError — When both commit and draft number are provided or neither.

commit (message: str, *, tag: Optional[str] = None) — None
Commit the draft.

Parameters
* message — The commit message.
* tag - A tag for current commit.

create_draft (title: Optional[str] = None) — int
Create the draft.

Parameters title — The draft title.
Returns The draft number of the created draft.

create_tag (name: str, revision: Optional[str] = None) — None
Create the tag for a commit.

Parameters
* name — The tag name to be created for the specific commit.

* revision - The information to locate the specific commit, which can be the commit id,
the branch name, or the tag name. If the revision is not given, create the tag for the current
commit.

property dataset_id
Return the TensorBay dataset ID.

Returns The TensorBay dataset ID.

delete_segment (name: str) — None
Delete a segment of the draft.

Parameters name — Segment name.

delete_tag (name: str) — None
Delete a tag.

Parameters name — The tag name to be deleted for the specific commit.

get_branch (name: str) — tensorbay.client.struct.Branch
Get the branch with the given name.

Parameters name — The required branch name.

Returns The Branch instance with the given name.

74 Chapter 1. What can TensorBay SDK do?

TensorBay

Raises TypeError — When the required branch does not exist or the given branch is illegal.

get_catalog () — fensorbay.label.catalog.Catalog
Get the catalog of the certain commit.

Returns Required Catalog.

get_commit (revision: Optional[str] = None) — tensorbay.client.struct.Commit
Get the certain commit with the given commit key.

Parameters revision — The information to locate the specific commit, which can be the
commit id, the branch name, or the tag name. If is not given, get the current commit.

Returns The Commi t instance with the given revision.
Raises TypeError — When the required commit does not exist or the given revision is illegal.

get_draft (draft_number: Optional[int] = None) — tensorbay.client.struct.Draft
Get the certain draft with the given draft number.

Parameters draft_number — The required draft number. If is not given, get the current draft.
Returns The Draft instance with the given number.
Raises TypeError — When the required draft does not exist or the given draft number is illegal.

get_notes () — fensorbay.dataset.dataset.Notes
Get the notes.

Returns The Notes.

get_tag (name: str) — tensorbay.client.struct.Tag
Get the certain tag with the given name.

Parameters name — The required tag name.
Returns The Tag instance with the given name.
Raises TypeError — When the required tag does not exist or the given tag is illegal.

list_branches (*, start: int = 0, stop: int = 9223372036854775807) — Itera-

tor[tensorbay.client.struct. Branch]
List the information of branches.

Parameters
* start — The index to start.
* stop — The index to end.
Yields The branches.

list_commits (revision: Optional[str] = None, *, start: int = 0, stop. int = 9223372036854775807)

— Iterator[tensorbay.client.struct. Commit]
List the commits.

Parameters

* revision — The information to locate the specific commit, which can be the commit id,
the branch name, or the tag name. If is given, list the commits before the given commit. If
is not given, list the commits before the current commit.

¢ start — The index to start.
* stop — The index to end.
Yields The tags.

1.11. API Reference 75

TensorBay

list_draft_titles_and_numbers (¥, start: int = 0, stop: int = 9223372036854775807) —

Iterator[Dict[str, Any]]
List the dict containing title and number of drafts.

Deprecated since version 1.2.0: Will be removed in version 1.5.0. Use DatasetClientBase.
list_draft () instead.

Parameters
* start — The index to start.
* stop — The index to end.
Yields The dict containing title and number of drafts.

list _drafts (*, start: int = 0, stop: int = 9223372036854775807) — ltera-

tor[tensorbay.client.struct. Draft]
List all the drafts.

Parameters
e start — The index to start.
* stop — The index to end.
Yields The drafts.

list_segment_names (¥, start: int = 0, stop: int = 9223372036854775807) — Iterator[str]
List all segment names in a certain commit.

Parameters
* start — The index to start.
* stop — The index to end.
Yields Required segment names.

list_tags (*, start: int = 0, stop: int = 9223372036854775807) — Itera-

tor[tensorbay.client.struct.Tag]
List the information of tags.

Parameters
e start — The index to start.
» stop — The index to end.
Yields The tags.

property name
Return the TensorBay dataset name.

Returns The TensorBay dataset name.

property status
Return the status of the dataset client.

Returns The status of the dataset client.

update_notes (*, is_continuous: bool) — None
Update the notes.

Parameters is_ continuous — Whether the data is continuous.

upload_catalog (catalog: tensorbay.label.catalog.Catalog) — None
Upload a catalog to the draft.

76 Chapter 1. What can TensorBay SDK do?

TensorBay

Parameters catalog— Catalog to upload.
Raises TypeError — When the catalog is empty.

class tensorbay.client.dataset.FusionDatasetClient (name: str, dataset_id: Str,
gas_client: GAS, *, commit_id:

Optional[str] = None)
Bases: tensorbay.client.dataset.DatasetClientBase

This class defines FusionDatasetClient.

FusionDatasetClient inherits from DatasetClientBase and provides more methods within a fu-
sion dataset scope, such as FusionDatasetClient.get_segment (), FusionDatasetClient.
commit and FusionDatasetClient.upload segment (). In contrast to DatasetClient, a
FusionDataset(Client has multiple sensors.

create_segment (name: str = ") — tensorbay.client.segment. FusionSegmentClient
Create a fusion segment with the given name.

Parameters name — Segment name, can not be “_default”.
Returns The created FusionSegmentClient with given name.
Raises TypeError — When the segment exists.

get_or_ create_segment (name: str = ") — tensorbay.client.segment.FusionSegmentClient
Get or create a fusion segment with the given name.

Parameters name — Segment name, can not be “_default”.
Returns The created FusionSegmentClient with given name.

get_segment (name: str = ") — tensorbay.client.segment. FusionSegmentClient
Get a fusion segment in a certain commit according to given name.

Parameters name — The name of the required fusion segment.

Returns ~tensorbay.client.segment.FusionSegmentClient.

Return type The required class

Raises GASSegmentError — When the required fusion segment does not exist.

upload_segment (segment: tensorbay.dataset.segment.FusionSegment, * jobs:
int = 1, skip_uploaded_files: bool = False) — tensor-
bay.client.segment.FusionSegmentClient
Upload a fusion segment object to the draft.

This function will upload all info contains in the input FusionSegment, which includes:
 Create a segment using the name of input fusion segment object.
 Upload all sensors in the segment to the dataset.

» Upload all frames in the segment to the dataset.

Parameters
* segment — The FusionSegment.
* jobs — The number of the max workers in multi-thread upload.
* skip uploaded files — Set it to True to skip the uploaded files.
Raises TypeError — When all the frames have the same patterns(both have frame id or not).

Returns

1.11. API Reference 77

TensorBay

The FusionSegmentClient used for uploading the data in the segment.

tensorbay.client.exceptions

Classes refer to TensorBay exceptions.

Error Description

GASResponseError Post response error

GASDatasetError The requested dataset does not exist
GASDatasetTypeError | The type of the requested dataset is wrong
GASDataTypeError Dataset has multiple data types

GASLabelsetError Requested data does not exist

GASLabelsetTypeError | The type of the requested data is wrong
GASSegmentError The requested segment does not exist

GASPathError Remote path does not follow linux style
GASFrameError Uploading frame has no timestamp and no frame index.

exception tensorbay.client.exceptions.GASDataTypeError
Bases: tensorbay.client.exceptions.GASException

This error is raised to indicate that the dataset has multiple data types.

exception tensorbay.client.exceptions.GASDatasetError (dataset_name: str)
Bases: tensorbay.client.exceptions.GASException

This error is raised to indicate that the requested dataset does not exist.
Parameters dataset_name — The name of the missing dataset.

exception tensorbay.client.exceptions.GASDatasetTypeError (dataset_name: Str,
is_fusion: bool)
Bases: tensorbay.client.exceptions.GASException

This error is raised to indicate that the type of the requested dataset is wrong.
Parameters
* dataset_name — The name of the dataset whose requested type is wrong.
¢ is fusion — Whether the dataset is a fusion dataset.

exception tensorbay.client.exceptions.GASException
Bases: Exception

This defines the parent class to the following specified error classes.

exception tensorbay.client.exceptions.GASFrameError
Bases: tensorbay.client.exceptions.GASException

This error is raised to indicate that uploading frame has no timestamp and no frame index.

exception tensorbay.client.exceptions.GASLabelsetError (labelset id: str)
Bases: tensorbay.client.exceptions.GASException

This error is raised to indicate that requested data does not exist.
Parameters labelset_id — The labelset ID of the missing labelset.

exception tensorbay.client.exceptions.GASLabelsetTypeError (labelset_id: Str,

is_fusion: bool)
Bases: tensorbay.client.exceptions.GASException

78 Chapter 1. What can TensorBay SDK do?

TensorBay

This error is raised to indicate that the type of the requested labelset is wrong.
Parameters
* labelset_id - The ID of the labelset whose requested type is wrong.
¢ is_fusion — whether the labelset is a fusion labelset.

exception tensorbay.client.exceptions.GASPathError (remote_path: str)
Bases: tensorbay.client.exceptions.GASException

This error is raised to indicate that remote path does not follow linux style.
Parameters remote_path — The invalid remote path.

exception tensorbay.client.exceptions.GASResponseError (response: re-

quests.models.Response)
Bases: tensorbay.client.exceptions.GASException

This error is raised to indicate post response error.
Parameters response — The response of the request.

exception tensorbay.client.exceptions.GASSegmentError (segmeni_name: str)
Bases: tensorbay.client.exceptions.GASException

This error is raised to indicate that the requested segment does not exist.

Parameters segment_name — The name of the missing segment_name.

tensorbay.client.gas

Class GAS.

The GAS defines the initial client to interact between local and TensorBay. It provides some operations on datasets
level such as GAS.create _dataset (), GAS.list_dataset_names () and GAS.get_dataset ().

AccessKey is required when operating with dataset.

class tensorbay.client.gas.GAS (access_key: str,url: str="")
Bases: object

GAS defines the initial client to interact between local and TensorBay.

GAS provides some operations on dataset level such as GAS.create_dataset () GAS.
list_dataset_names () and GAS.get_dataset ().

Parameters
* access_key — User’s access key.
* url — The host URL of the gas website.

create_dataset (name: str, is_fusion: typing_extensions.Literal[False] = False, *, region: Op-

tional[str] = 'None') — tensorbay.client.dataset.DatasetClient
create_dataset (name: str, is_fusion: typing_extensions.Literal[True], *, region: Optional[str] =

'‘None') — tensorbay.client.dataset. FusionDatasetClient
create_dataset (name: str, is_fusion: bool = False, * region: Optional[str]

= 'None') — Union[tensorbay.client.dataset. DatasetClient, tensor-

bay.client.dataset. FusionDatasetClient]
Create a TensorBay dataset with given name.

Parameters

* name — Name of the dataset, unique for a user.

1.11. API Reference 79

TensorBay

¢ is_ fusion — Whether the dataset is a fusion dataset, True for fusion dataset.

9% ¢ 99 ¢

* region — Region of the dataset to be stored, only support “beijing”, “hangzhou”, “shang-
hai”, default is “‘shanghai”.

Returns

The created DatasetClient instance or FusionDatasetClient instance
(is_fusion=True), and the status of dataset client is “commit”.

delete_dataset (name: str) — None
Delete a TensorBay dataset with given name.

Parameters name — Name of the dataset, unique for a user.

get_dataset (name: str, is_fusion: typing_extensions.Literal[False] = False) — tensor-
bay.client.dataset. DatasetClient
get_dataset (name: Str, is_fusion: typing_extensions.Literal[True]) — tensor-

bay.client.dataset. FusionDatasetClient
get_dataset (name: str, is_fusion: bool = False) — Union[tensorbay.client.dataset.DatasetClient,

tensorbay.client.dataset. FusionDatasetClient]
Get a TensorBay dataset with given name and commit ID.

Parameters

* name — The name of the requested dataset.

e is_ fusion — Whether the dataset is a fusion dataset, True for fusion dataset.
Returns

The requested DatasetClient instance or FusionDatasetClient instance
(is_fusion=True), and the status of dataset client is “‘commit”.

Raises GASDatasetTypeError — When the requested dataset type is not the same as given.

list_dataset_names (*, start: int = 0, stop: int = 9223372036854775807) — Iterator[str]
List names of all TensorBay datasets.

Parameters
* start — The index to start.
* stop — The index to stop.
Yields Names of all datasets.

rename_dataset (name: str, new_name: str) — None
Rename a TensorBay Dataset with given name.

Parameters
* name — Name of the dataset, unique for a user.
* new_name — New name of the dataset, unique for a user.

upload_dataset (dataset: tensorbay.dataset.dataset.Dataset, draft_number: Optional[int] = None,
* jobs: int = 'l', skip_uploaded_files: bool = 'False') — tensor-
bay.client.dataset.DatasetClient

upload_dataset (dataset: tensorbay.dataset.dataset.FusionDataset, draft_number: Optional[int] =
None, *, jobs: int = 'l', skip_uploaded_files: bool = 'False') — tensor-
bay.client.dataset. FusionDatasetClient

80 Chapter 1. What can TensorBay SDK do?

TensorBay

upload_dataset (dataset: Unionftensorbay.dataset.dataset.Dataset, tensor-
bay.dataset.dataset.FusionDataset], draft_number: Optional[int]
= None, *, jobs: int = 'lI'' skip_uploaded._files: bool =
'False') — Union[tensorbay.client.dataset. DatasetClient, tensor-

bay.client.dataset. FusionDatasetClient]
Upload a local dataset to TensorBay.

This function will upload all information contains in the Dataset or FusionDataset, which includes:
* Create a TensorBay dataset with the name and type of input local dataset.

* Upload all Segment or FusionSegment in the dataset to TensorBay.

Parameters
* dataset — The Dataset or FusionDataset needs to be uploaded.
¢ jobs — The number of the max workers in multi-thread upload.
* skip_uploaded_files — Set it to True to skip the uploaded files.
* draft_number — The draft number.
Returns

The DatasetClient or FusionDatasetClient bound with the uploaded dataset.

tensorbay.client.log

Logging utility functions.
Dump_request_and_response dumps http request and response.

class tensorbay.client.log.RequestLogging (request: requests.models.PreparedRequest)
Bases: object

This class used to lazy load request to logging.
Parameters request — The request of the request.

class tensorbay.client.log.ResponseLogging (response: requests.models.Response)
Bases: object

This class used to lazy load response to logging.
Parameters response — The response of the request.
tensorbay.client.log.dump_request_and_response (response: requests.models.Response)
— Str
Dumps http request and response.
Parameters response — Hittp response and response.

Returns

Http request and response for logging, sample:

FHEHFFHAAFFHAFFHAFHHAHFFHAH#F HTTP Request #H###H#H####H##FHHFFHAFFHAFF#H
"url": https://gas.graviti.cn/gatewayv2/content-store/putObject
"method": POST

"headers": {
"User—-Agent": "python-requests/2.23.0",
"Accept-Encoding": "gzip, deflate",

(continues on next page)

1.11. API Reference 81

TensorBay

(continued from previous page)

"Accept": "x/x",
"Connection": "keep-alive",
"X-Token": "c3b1808b21024eb38£066809431e5bb9o",
"Content-Type": "multipart/form-data;
—boundary=5adff1fc0524465593d6a9%ad68aad7£f9",
"Content-Length": "330001"
}
"body":
--5adff1£c0524465593d6a%ad68aad77£9
b'Content-Disposition: form-data; name="contentSetId"\r\n\r\n'
b'e6110f£f1-9e7c-4c98-aaf9-5e35522969b9"'

——5adff1fc0524465593d6a%ad68aad7£f9
b'Content-Disposition: form-data; name="filePath"\r\n\r\n'
b'4.3pg’

-—-5adffl1fc0524465593d6a%ad68aad7£9

b'Content-Disposition: form-data; name="fileData"; filename="4.jpg"\r\
—n\r\n'

[329633 bytes of object data]

-—-5adffl1fc0524465593d6a%ad68aad7£9——

#h#### A A AR A A A #A#### HTTP Response ###########
"url": https://gas.graviti.cn/gatewayv2/content-stor
"status_code": 200
"reason": OK
"headers": {
"Date": "Sat, 23 May 2020 13:05:09 GMT",
"Content-Type": "application/Jjson;charset=utf-8",
"Content-Length": "69",
"Connection": "keep-alive",
"Access—-Control-Allow-Origin": "x",
"X-Kong-Upstream-Latency": "180",
"X-Kong-Proxy-Latency": "112",
"Via": "kong/2.0.4"
}
"content": {
"success": true,
"code": "DATACENTER-0",
"message": "success",
"data": {}

tensorbay.client.requests

Class Client and method multithread_upload.
Client cansend POST, PUT, and GET requests to the TensorBay Dataset Open API.
multithread upload () creates a multi-thread framework for uploading.

class tensorbay.client.requests.Client (access_key: str,url: str="")
Bases: object

This class defines C1ient.

82 Chapter 1. What can TensorBay SDK do?

TensorBay

Client defines the client that saves the user and URL information and supplies basic call methods that will be
used by derived clients, such as sending GET, PUT and POST requests to TensorBay Open APL

Parameters
* access_key — User’s access key.
* url — The URL of the graviti gas website.

do (method: str, url: str, ¥*kwargs: Any) — requests.models.Response
Send a request.

Parameters

* method — The method of the request.

e url — The URL of the request.

* xxkwargs — Extra keyword arguments to send in the GET request.
Returns Response of the request.

open_api_do (method: str, section: str, dataset_id:

quests.models.Response
Send a request to the TensorBay Open API.

str =", **kwargs: Any) — re-

Parameters

* method — The method of the request.

* section — The section of the request.

e dataset_id — Dataset ID.

* xxkwargs — Extra keyword arguments to send in the POST request.
Returns Response of the request.

property session

Create and return a session per PID so each sub-processes will use their own session.
Returns The session corresponding to the process.

class tensorbay.client.requests.Config
Bases: object

This is a base class defining the concept of Request Config.

property is_intern
Get whether the request is from intern.

Returns Whether the request is from intern.

class tensorbay.client.requests.TimeoutHTTPAdapter (*args: Any, timeout: Optional[int]
= None, **kwargs: Any)
Bases: requests.adapters.HTTPAdapter
This class defines the http adapter for setting the timeout value.
Parameters

* xargs — Extra arguments to initialize TimeoutHTTPAdapter.

* timeout - Timeout value of the post request in seconds.

* xxkwargs — Extra keyword arguments to initialize TimeoutHTTPAdapter.

1.11. API Reference 83

TensorBay

send (request: requests.models.PreparedRequest, stream: Any = False, timeout: Optional[Any] = None,
verify: Any = True, cert: Optional[Any] = None, proxies: Optional[Any] = None) — Any
Send the request.

Parameters
* request — The PreparedRequest being sent.
* stream— Whether to stream the request content.
* timeout - Timeout value of the post request in seconds.

* verify — A path string to a CA bundle to use or a boolean which controls whether to
verify the server’s TLS certificate.

e cert — User-provided SSL certificate.
* proxies — Proxies dict applying to the request.
Returns Response object.

class tensorbay.client.requests.UserSession
Bases: requests.sessions.Session

This class defines UserSession.

request (method: str, url: str, *args: Any, **kwargs: Any) — requests.models.Response
Make the request.

Parameters

* method — Method for the request.

e url — URL for the request.

* xargs — Extra arguments to make the request.

* xxkwargs — Extra keyword arguments to make the request.
Returns Response of the request.
Raises GASResponseError — If post response error.

tensorbay.client.requests.multithread_ upload (function: Callable[[_T], None], arguments:
Iterable[_T], *, jobs: int = 1) — None
Multi-thread upload framework.

Parameters
* function — The upload function.
* arguments — The arguments of the upload function.
* jobs — The number of the max workers in multi-thread uploading procession.

tensorbay.client.requests.paging_range (start: int, stop: int, limit: int) — Iterator[Tuple[int,
int]]
A Generator which generates offset and limit for paging request.

84 Chapter 1. What can TensorBay SDK do?

TensorBay

Examples

>>> paging_range (0, 10, 3)
<generator object paging_range at 0x11b9932e0>

>>> list (paging_range (0, 10, 3))
[(0, 3), (3, 3), (6, 3), (9, 1)]

Parameters
* start — The paging index to start.
* stop — The paging index to end.
* limit — The paging limit.
Yields The tuple (offset, limit) for paging request.

tensorbay.client.segment

SegmentClientBase, SegmentClient and FusionSegmentClient.

The SegmentClient is a remote concept. It contains the information needed for determining a unique segment
in a dataset on TensorBay, and provides a series of methods within a segment scope, such as SegmentClient.
upload label (), SegmentClient.upload data (), SegmentClient.list_data () and so on. In
contrast to the SegmentClient, Segment is a local concept. It represents a segment created locally. Please refer
to Segment for more information.

Similarly to the SegmentClient,the FusionSegmentClient represents the fusion segment in a fusion dataset
on TensorBay, and its local counterpart is FusionSegment. Please refer to FusionSegment for more informa-
tion.

class tensorbay.client.segment.FusionSegmentClient (name: str, data_client: Fusion-

DatasetClient)
Bases: tensorbay.client.segment.SegmentClientBase

This class defines FusionSegmentClient.

FusionSegmentClient inherits from SegmentClientBase and provides methods within a fusion
segment scope, such as FusionSegmentClient.upload sensor (), FusionSegmentClient.
upload_ frame () and FusionSegmentClient.list_frames ().

In contrast to SegmentClient, FusionSegmentClient has multiple sensors.

delete_sensor (sensor_name: str) — None
Delete a TensorBay sensor of the draft with the given sensor name.

Parameters sensor_name — The TensorBay sensor to delete.

get_sensors () — tensorbay.sensor.sensor.Sensors
Return the sensors in a fusion segment client.

Returns The sensors in the fusion segment client.

list_frames (% start: int = 0, stop: int = 9223372036854775807) — lItera-

tor[tensorbay.dataset.frame. Frame]
List required frames in the segment in a certain commit.

Parameters

e start — The index to start.

1.11. API Reference 85

TensorBay

* stop — The index to stop.
Yields Required Frame.

upload_frame (frame: tensorbay.dataset.frame.Frame, timestamp: Optional[float] = None) — None
Upload frame to the draft.

Parameters

e frame — The Frame to upload.

* timestamp — The mark to sort frames, supporting timestamp and float.
Raises

* GASPathError — When remote_path does not follow linux style.

* GASException— When uploading frame failed.

e TypeError — When frame id conflicts

upload_sensor (sensor: tensorbay.sensor.sensor.Sensor) — None
Upload sensor to the draft.

Parameters sensor — The sensor to upload.

class tensorbay.client.segment.SegmentClient (name: str, data_client: DatasetClient)
Bases: tensorbay.client.segment.SegmentClientBase

This class defines SegmentClient.

SegmentClient inherits from SegmentClientBase and provides methods within a segment scope, such as
upload_label(), upload_data(), list_data() and so on. In contrast to FusionSegmentClient, SegmentClient
has only one sensor.

list_data (* start: int = 0, stop: int = 9223372036854775807) — Itera-

tor[tensorbay.dataset.data. RemoteData]
List required Data object in a dataset segment.

Parameters
* start — The index to start.
* stop — The index to stop.
Yields Required Data object.

list_data_paths (¥, start: int = 0, stop: int = 9223372036854775807) — Iterator[str]
List required data path in a segment in a certain commit.

Parameters
¢ start — The index to start.
e stop — The index to end.
Yields Required data paths.

upload_data (data: tensorbay.dataset.data.Data) — None
Upload Data object to the draft.

Parameters data — The Data.

upload_file (local_path: str, target_remote_path: str = ") — None
Upload data with local path to the draft.

Parameters

* local_path — The local path of the data to upload.

86 Chapter 1. What can TensorBay SDK do?

TensorBay

* target_remote_path — The path to save the data in segment client.
Raises

* GASPathError — When target_remote_path does not follow linux style.

* GASException— When uploading data failed.

upload_1label (data: tensorbay.dataset.data.Data) — None
Upload label with Data object to the draft.

Parameters data — The data object which represents the local file to upload.

class tensorbay.client.segment.SegmentClientBase (name: str, dataset_client:
Union[DatasetClient, Fusion-

DatasetClient])
Bases: object

This class defines the basic concept of SegmentClient.
A SegmentClientBase contains the information needed for determining a unique segment in a dataset
on TensorBay.
Parameters
* name — Segment name.
* dataset_client — The dataset client.
delete_data (remote_paths: Union[str, Iterable[str]]) — None
Delete data of a segment in a certain commit with the given remote paths.
Parameters remote_paths — The remote paths of data in a segment.

property name
Return the segment name.

Returns The segment name.

property status
Return the status of the dataset client.

Returns The status of the dataset client.

tensorbay.client.struct

User, Commit, Tag, Branch and Draft classes.

User defines the basic concept of a user with an action.
Commi t defines the structure of a commit.

Tag defines the structure of a commit tag.

Branch defines the structure of a branch.

Draft defines the structure of a draft.

class tensorbay.client.struct.Branch (name: str, commit_id: str, parent_commit_id:
Optional[str], message: str, committer: tensor-

bay.client.struct.User)
Bases: tensorbay.client.struct._NamedCommit

This class defines the structure of a branch.

1.11. API Reference 87

TensorBay

Parameters
* name — The name of the branch.
e commit_id - The commit id.
* parent_commit_id — The parent commit id.
* message — The commit message.
* committer — The commit user.

class tensorbay.client.struct.Commit (commit_id: str, parent_commit_id: Optional[str], mes-
sage: str, committer: tensorbay.client.struct.User)
Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqQMixin

This class defines the structure of a commit.
Parameters
e commit_id - The commit id.
* parent_commit_id — The parent commit id.
* message — The commit message.
* committer — The commit user.

dumps () — Dict[str, Any]
Dumps all the commit information into a dict.

Returns

A dict containing all the information of the commit:

{
"commitId": <str>
"parentCommitId": <str> or None

"message": <str>
"committer": {
"name": <str>

"date": <int>

classmethod loads (contents: Dict[str, Any]) — _T
Loads a Comm1i t instance for the given contents.

Parameters contents — A dict containing all the information of the commit:

{

"commitId": <str>
"parentCommitId": <str> or None
"message": <str>
"committer": {

"name": <str>

"date": <int>

Returns A Commit instance containing all the information in the given contents.

class tensorbay.client.struct.Draft (number: int, title: str)
Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqQMixin

88 Chapter 1. What can TensorBay SDK do?

TensorBay

This class defines the basic structure of a draft.
Parameters
* number — The number of the draft.
* title — The title of the draft.

dumps () — Dict[str, Any]
Dumps all the information of the draft into a dict.

Returns

A dict containing all the information of the draft:

{
"number": <int>
"title": <str>

classmethod loads (contents: Dict[str, Any]) — _T
Loads a Dra £t instance from the given contents.

Parameters contents — A dict containing all the information of the draft:

{
"number": <int>
"title": <str>

Returns A Draft instance containing all the information in the given contents.

class tensorbay.client.struct.Tag (name: str, commit_id: str, parent_commit_id:
Optional[str], message: str, committer: tensor-

bay.client.struct.User)
Bases: tensorbay.client.struct._NamedCommit

This class defines the structure of the tag of a commit.
Parameters
* name — The name of the tag.
e commit_id — The commit id.
* parent_commit_id - The parent commit id.
* message — The commit message.
e committer — The commit user.

class tensorbay.client.struct.User (name: str, date: int)
Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqQMixin

This class defines the basic concept of a user with an action.
Parameters
* name — The name of the user.
* date — The date of the user action.

dumps () — Dict[str, Any]
Dumps all the user information into a dict.

1.11. API Reference 89

TensorBay

Returns

A dict containing all the information of the user:

{
"name": <str>
"date": <int>

classmethod loads (contents: Dict[str; Any]) — _T
Loads a User instance from the given contents.

Parameters contents — A dict containing all the information of the commit:

{
"name": <str>
"date": <int>

Returns A User instance containing all the information in the given contents.

1.11.2 tensorbay.dataset

tensorbay.dataset.data

Data.

Data is the most basic data unit of a Dataset. It contains path information of a data sample and its corresponding
labels.

class tensorbay.dataset.data.Data (local_path: str, *, target_remote_path: Optional[str] =
None, timestamp: Optional[float] = None)
Bases: tensorbay.dataset.data.DataBase

Data is a combination of a specific local file and its label.
It contains the file local path, label information of the file and the file metadata, such as timestamp.
A Data instance contains one or several types of labels.
Parameters
* local_path — The file local path.
* target_remote_path — The file remote path after uploading to tensorbay.
* timestamp — The timestamp for the file.

path
The file local path.

timestamp
The timestamp for the file.

labels
The Labels that contains all the label information of the file.

dumps () — Dict[str, Any]
Dumps the local data into a dict.

Returns

Dumped data dict, which looks like:

90 Chapter 1. What can TensorBay SDK do?

TensorBay

"localPath": <str>,
"timestamp": <float>,
"label": {
"CLASSIFICATION": {...},
"BOX2D": {...},
"BOX3D": {...},
"POLYGON2D": {...},
"POLYLINE2D": {...},
"KEYPOINTS2D": {...},

"SENTENCE": {...}

classmethod loads (contents: Dict[str, Any]) — _T
Loads Data from a dict containing local data information.

Parameters contents — A dict containing the information of the data, which looks like:

{

"localPath": <str>,

"timestamp": <float>,

"label": {
"CLASSIFICATION": {...},
"BOX2D": {...},
"BOX3D": {...},
"POLYGON2D": {...},
"POLYLINE2D": {...},
"KEYPOINTS2D": {...},

"SENTENCE": {...}

Returns A Data instance containing information from the given dict.

open () — _io.BufferedReader
Return the binary file pointer of this file.

The local file pointer will be obtained by build-in open ().
Returns The local file pointer for this data.

property target_remote_path
Return the target remote path of the data.

Target remote path will be used when this data is uploaded to tensorbay, and the target remote path will be
the uploaded file’s remote path.

Returns The target remote path of the data.

class tensorbay.dataset.data.DataBase (path: str, *, timestamp: Optional[float] = None)
Bases: tensorbay.utility.repr.ReprMixin

DataBase is a base class for the file and label combination.
Parameters
* path - The file path.

* timestamp — The timestamp for the file.

1.11. API Reference 91

TensorBay

path
The file path.

timestamp
The timestamp for the file.

labels
The Labels that contains all the label information of the file.

static loads (contents: Dict[str, Any]) — _Type

Loads Data or RemoteData from a dict containing data information.

Parameters contents — A dict containing the information of the data, which looks like:

{

"localPath" or "remotePath": <str>,
"timestamp": <float>,
"label": {

"CLASSIFICATION": {...},
"BOX2D": {...},

"BOX3D": {...},
"POLYGON2D": {...},
"POLYLINE2D": {...},
"KEYPOINTS2D": {...},
"SENTENCE": {...}

Returns A Data or RemoteDat a instance containing the given dict information.

class tensorbay.dataset.data.RemoteData (remote_path: str, *, timestamp: Optional[float] =
None, url_getter: Optional[Callable[[str], str]] =

None)
Bases: tensorbay.dataset.data.DataBase

RemoteData is a combination of a specific tensorbay dataset file and its label.

It contains the file remote path, label information of the file and the file metadata, such as timestamp.

A RemoteData instance contains one or several types of labels.
Parameters
* remote_path — The file remote path.
* timestamp — The timestamp for the file.
* url_getter — The url getter of the remote file.

path
The file remote path.

timestamp
The timestamp for the file.

labels
The Labels that contains all the label information of the file.

dumps () — Dict[str, Any]
Dumps the remote data into a dict.

Returns

Dumped data dict, which looks like:

92 Chapter 1

. What can TensorBay SDK do?

TensorBay

"remotePath": <str>,
"timestamp": <float>,
"label": {

"CLASSIFICATION": {...},
"BOX2D": {...},

"BOX3D": {...},
"POLYGON2D": {...},
"POLYLINE2D": {...},
"KEYPOINTS2D": {...},
"SENTENCE": {...}

get_url () — str
Return the url of the data hosted by tensorbay.

Returns The url of the data.
Raises ValueError — When the url_getter is missing.

classmethod loads (contents: Dict[str, Any]) — _T
Loads RemoteData from a dict containing remote data information.

Parameters contents — A dict containing the information of the data, which looks like:

{

"remotePath": <str>,
"timestamp": <float>,
"label": {

"CLASSIFICATION": {...},
"BOX2D": {...},

"BOX3D": {...},
"POLYGON2D": {...},
"POLYLINE2D": {...},
"KEYPOINTS2D": {...},
"SENTENCE": {...}

Returns A Data instance containing information from the given dict.

open () — http.client HTTPResponse
Return the binary file pointer of this file.

The remote file pointer will be obtained by urllib.request.urlopen ().

Returns The remote file pointer for this data.

1.11. API Reference

93

TensorBay

tensorbay.dataset.dataset

Notes, DatasetBase, Dataset and FusionDataset.
Notes contains the basic information of a DatasetBase.

DatasetBase defines the basic concept of a dataset, which is the top-level structure to handle your data files, labels
and other additional information.

It represents a whole dataset contains several segments and is the base class of Dataset and FusionDataset.

Dataset is made up of data collected from only one sensor or data without sensor information. It consists of a list
of Segment.

FusionDataset is made up of data collected from multiple sensors. It consists of a list of FusionSegment.

class tensorbay.dataset.dataset .Dataset (name: str)
Bases: tensorbay.dataset.dataset .DatasetBase[tensorbay.dataset.segment.
Segment]

This class defines the concept of dataset.

Dataset is made up of data collected from only one sensor or data without sensor information. It consists of a
list of Segment.

create_segment (segment_name: str = ") — tensorbay.dataset.segment.Segment
Create a segment with the given name.

Parameters segment_name — The name of the segment to create, which default value is an
empty string.

Returns The created Segment.

class tensorbay.dataset.dataset.DatasetBase (name: str)
Bases: tensorbay.utility.name.NameMixin, Sequence[tensorbay.dataset.dataset.
_T]

This class defines the concept of a basic dataset.

DatasetBase represents a whole dataset contains several segments and is the base class of Dataset and
FusionDataset.

A dataset with labels should contain a Catalog indicating all the possible values of the labels.
Parameters name — The name of the dataset.

add_segment (segment: _T) — None
Add a segment to the dataset.

Parameters segment — The segment to be added.

property catalog
Return the catalog of the dataset.

Returns The Catalog of the dataset.

get_segment_by name (name: str) — _T
Return the segment corresponding to the given name.

Parameters name — The name of the request segment.
Returns The segment which matches the input name.

load_catalog (filepath: str) — None
Load catalog from a json file.

94 Chapter 1. What can TensorBay SDK do?

TensorBay

Parameters filepath — The path of the json file which contains the catalog information.

property notes
Return the notes of the dataset.

Returns Notes of the dataset.
Return type The class

class tensorbay.dataset.dataset.FusionDataset (name: str)
Bases: tensorbay.dataset.dataset.DatasetBase[tensorbay.dataset.segment.

FusionSegment]
This class defines the concept of fusion dataset.
FusionDataset is made up of data collected from multiple sensors. It consists of a list of FusionSegment.

create_segment (segment_name: str = "') — tensorbay.dataset.segment.FusionSegment
Create a fusion segment with the given name.

Parameters segment_name — The name of the fusion segment to create, which default value
is an empty string.

Returns The created FusionSegment.

class tensorbay.dataset.dataset .Notes (is_continuous: bool = False)
Bases: tensorbay.utility.repr.ReprMixin, tensorbay.utility.common.EqQMixin

This is a class stores the basic information of DatasetBase.
Parameters is_continuous — Whether the data inside the dataset is time-continuous.

dumps () — Dict[str, Any]
Dumps the notes into a dict.

Returns

A dict containing all the information of the Notes:

{

"isContinuous": <boolean>

keys () — KeysView[str]
Return the valid keys within the notes.

Returns The valid keys within the notes.

classmethod loads (contents: Dict[str, Any]) — _T
Loads a Notes instance from the given contents.

Parameters contents — The given dict containing the dataset notes:

{

"isContinuous": <boolean>

Returns The loaded Not es instance.

1.11. API Reference 95

TensorBay

tensorbay.dataset.segment

Segment and FusionSegment.

Segment is a concept in Dataset. It is the structure that composes Dataset, and consists of a series of Data
without sensor information.

Fusion segment is a concept in FusionDataset. Itis the structure that composes FusionDataset, and consists
of a list of Frame along with multiple Sensors.

class tensorbay.dataset.segment .FusionSegment (name: str = ", client: Op-
tional[FusionDatasetClient] = None)
Bases: tensorbay.utility.name.NameMixin, tensorbay.utility.user.

UserMutableSequence[tensorbay.dataset.frame.Frame]
This class defines the concept of fusion segment.

Fusion segment is a concept in FusionDataset. It is the structure that composes FusionDataset, and
consists of a list of Frame.

Besides, a fusion segment contains multiple Sensors correspoinding to the Dat a under each Frame.

If the segment is inside of a time-continuous FusionDataset, the time continuity of the frames should be
indicated by the index inside the fusion segment.

Since FusionSegment extends UserMutableSequence, its basic operations are the same as a list’s.

To initialize a FusionSegment and add a F'rame to it:

fusion_segment = FusionSegment (fusion_segment_name)
frame = Frame ()

fusion_segment.append (frame)

Parameters
* name — The name of the fusion segment, whose default value is an empty string.

* client — The FusionDatasetClient if you want to read the segment from tensorbay.

class tensorbay.dataset.segment.Segment (name: str = ", client: Optional[DatasetClient] =
None)
Bases: tensorbay.utility.name.NameMixin, tensorbay.utility.user.

UserMutableSequence[DataBase._Type]
This class defines the concept of segment.

Segment is a concept in Dataset. Itis the structure that composes Dataset, and consists of a series of Data
without sensor information.

If the segment is inside of a time-continuous Dataset, the time continuity of the data should be indicated by
:meth’ ~graviti.dataset.data.Data.remote_path".

Since Segment extends UserMutableSequence, its basic operations are the same as a list’s.

To initialize a Segment and add a Data to it:

segment = Segment (segment_name)
segment . append (Data ())

Parameters

* name — The name of the segment, whose default value is an empty string.

96 Chapter 1. What can TensorBay SDK do?

TensorBay

* client — The DatasetClient if you want to read the segment from tensorbay.

sort (* key: Callable[[Union[Data, RemoteData]], Any] = <function Segment.<lambda>>, reverse:

bool = False) — None
Sort the list in ascending order and return Non