What is TensorBay?¶
As an expert in unstructured data management, TensorBay provides services like data hosting, complex data version management, online data visualization, and data collaboration. TensorBay’s unified authority management makes your data sharing and collaborative use more secure.
This documentation describes SDK and CLI tools for using TensorBay.
What can TensorBay SDK do?¶
TensorBay Python SDK is a python library to access TensorBay and manage your datasets. It provides:
A pythonic way to access your TensorBay resources by TensorBay OpenAPI.
An easy-to-use CLI tool gas (Graviti AI service) to communicate with TensorBay.
A consistent dataset structure to read and write your datasets.
Getting started with TensorBay¶
Installation¶
To install TensorBay SDK and CLI by pip, run the following command:
$ pip3 install tensorbay
To verify the SDK and CLI version, run the following command:
$ gas --version
Registration¶
Before using TensorBay SDK, please finish the following registration steps:
Please visit Graviti AI Service(GAS) to sign up.
Please visit this page to get an AccessKey.
Note
An AccessKey is needed to authenticate identity when using TensorBay via SDK or CLI.
Usage¶
Authorize a Client Object¶
from tensorbay import GAS
gas = GAS("<YOUR_ACCESSKEY>")
See this page for details about authenticating identity via CLI.
Create a Dataset¶
gas.create_dataset("DatasetName")
List Dataset Names¶
dataset_list = list(gas.list_dataset_names())
Upload Images to the Dataset¶
from tensorbay.dataset import Data, Dataset
# Organize the local dataset by the "Dataset" class before uploading.
dataset = Dataset("DatasetName")
# TensorBay uses "segment" to separate different parts in a dataset.
segment = dataset.create_segment()
segment.append(Data("0000001.jpg"))
segment.append(Data("0000002.jpg"))
dataset_client = gas.upload_dataset(dataset)
# TensorBay provides dataset version control feature, commit the uploaded data before using it.
dataset_client.commit("Initial commit")
Read Images from the Dataset¶
from PIL import Image
from tensorbay.dataset import Segment
dataset_client = gas.get_dataset("DatasetName")
segment = Segment("", dataset_client)
for data in segment:
with data.open() as fp:
image = Image.open(fp)
width, height = image.size
image.show()
Delete the Dataset¶
gas.delete_dataset("DatasetName")
Examples¶
In this topic, we write a series of examples to help developers to use TensorBay(Table. 1).
Examples |
Description |
---|---|
This example describes how to manage Dogs vs Cats dataset,
which is an image dataset with Classification label.
|
|
This example describes how to manage 20 Newsgroups
dataset, which is a text dataset with Classification label.
|
|
This example describes how to manage LeedsSportsPose
dataset, which is an image dataset with Keypoints2D label.
|
|
Dogs vs Cats¶
This topic describes how to manage the “Dogs vs Cats” dataset.
“Dogs vs Cats” is a dataset with Classification label type. See this page for more details about this dataset.
Authorize a Client Object¶
First of all, create a GAS client.
from tensorbay import GAS
ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)
Create Dataset¶
Then, create a dataset client by passing the dataset name to the GAS client.
gas.create_dataset("Dogs vs Cats")
List Dataset Names¶
To check if you have created “Dogs vs Cats” dataset, you can list all your available datasets. See this page for details.
list(gas.list_dataset_names())
Note
Note that method list_dataset_names()
returns an iterator, use list()
to transfer it to a “list”.
Organize Dataset¶
Now we describe how to organize the “Dogs vs Cats” dataset by the Dataset
object before uploading it to TensorBay. It takes the following steps to organize “Dogs vs Cats”.
Write the Catalog¶
The first step is to write the catalog. Catalog is a json file contains all label information of one dataset. See this page for more details. The only annotation type for “Dogs vs Cats” is Classification, and there are 2 Category types.
1 2 3 4 5 | {
"CLASSIFICATION": {
"categories": [{ "name": "cat" }, { "name": "dog" }]
}
}
|
Write the Dataloader¶
The second step is to write the dataloader.
The function of dataloader is to read the dataset into a
Dataset
object.
The code block below displays the “Dogs vs Cats” dataloader.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | #!/usr/bin/env python3
#
# Copyright 2021 Graviti. Licensed under MIT License.
#
# pylint: disable=invalid-name
"""Dataloader of the DogsVsCats dataset."""
import os
from ...dataset import Data, Dataset
from ...label import Classification
from .._utility import glob
DATASET_NAME = "Dogs vs Cats"
_SEGMENTS = {"train": True, "test": False}
def DogsVsCats(path: str) -> Dataset:
"""Dataloader of the DogsVsCats dataset.
Arguments:
path: The root directory of the dataset.
The file structure should be like::
<path>
train/
cat.0.jpg
...
dog.0.jpg
...
test/
1000.jpg
1001.jpg
...
Returns:
Loaded ``Dataset`` object.
"""
root_path = os.path.abspath(os.path.expanduser(path))
dataset = Dataset(DATASET_NAME)
dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
for segment_name, is_labeled in _SEGMENTS.items():
segment = dataset.create_segment(segment_name)
image_paths = glob(os.path.join(root_path, segment_name, "*.jpg"))
for image_path in image_paths:
data = Data(image_path)
if is_labeled:
data.label.classification = Classification(os.path.basename(image_path)[:3])
segment.append(data)
return dataset
|
Note that after creating the dataset, you need to load the catalog.(L43) The catalog file “catalog.json” is in the same directory with dataloader file.
In this example, we create segments by dataset.create_segment(SEGMENT_NAME)
.
You can also create a default segment without giving a specific name, then its name
will be “”.
See this page for more details for about Classification annotation details.
Note
The Dogs vs Cats dataloader above uses relative import(L11-12). However, when you write your own dataloader you should use regular import. And when you want to contribute your own dataloader, remember to use relative import.
Upload Dataset¶
After you finish the dataloader and organize the “Dogs vs Cats” into a
Dataset
object, you can upload it
to TensorBay for sharing, reuse, etc.
# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("Dogs vs Cats")
Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see this page for more details about version control.
Note
Commit operation can also be done on our GAS Platform.
Read Dataset¶
Now you can read “Dogs vs Cats” dataset from TensorBay.
dataset_client = gas.get_dataset("Dogs vs Cats")
In dataset “Dogs vs Cats”, there are two
Segments: train
and test
,
you can get the segment names by list them all.
list(dataset_client.list_segment_names())
You can get a segment by passing the required segment name.
from tensorbay.dataset import Segment
train_segment = Segment("train", dataset_client)
In the train segment, there is a sequence of data. You can get one by index.
data = train_segment[0]
Note
If the segment or fusion segment is created without given name, then its name will be “”.
In each data, there is a sequence of Classification annotations. You can get one by index.
category = data.label.classification.category
There is only one label type in “Dogs vs Cats” dataset, which is classification
. The information stored in Category is
one of the category names in “categories” list of catalog.json.
See this page for more details about the
structure of Classification.
Delete Dataset¶
To delete “Dogs vs Cats”, run the following code:
gas.delete_dataset("Dogs vs Cats")
BSTLD¶
This topic describes how to manage the “BSTLD” dataset.
“BSTLD” is a dataset with Box2D label type (Fig. 1). See this page for more details about this dataset.

The preview of a cropped image with labels from “BSTLD”.¶
Authorize a Client Object¶
First of all, create a GAS client.
from tensorbay import GAS
ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)
Create Dataset¶
Then, create a dataset client by passing the dataset name to the GAS client.
gas.create_dataset("BSTLD")
List Dataset Names¶
To check if you have created “BSTLD” dataset, you can list all your available datasets. See this page for details.
list(gas.list_dataset_names())
Note
Note that method list_dataset_names()
returns an iterator, use list()
to transfer it to a “list”.
Organize Dataset¶
Now we describe how to organize the “BSTLD” dataset by the Dataset
object before uploading it to TensorBay. It takes the following steps to organize “BSTLD”.
Write the Catalog¶
The first step is to write the catalog. Catalog is a json file contains all label information of one dataset. See this page for more details. The only annotation type for “BSTLD” is Box2D, and there are 13 Category types and one Attributes type.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | {
"BOX2D": {
"categories": [
{ "name": "Red" },
{ "name": "RedLeft" },
{ "name": "RedRight" },
{ "name": "RedStraight" },
{ "name": "RedStraightLeft" },
{ "name": "Green" },
{ "name": "GreenLeft" },
{ "name": "GreenRight" },
{ "name": "GreenStraight" },
{ "name": "GreenStraightLeft" },
{ "name": "GreenStraigntRight" },
{ "name": "Yellow" },
{ "name": "off" }
],
"attributes": [
{
"name": "occluded",
"type": "boolean"
}
]
}
}
|
Write the Dataloader¶
The second step is to write the dataloader.
The function of dataloader is to read the dataset into a
Dataset
object.
The code block below displays the “BSTLD” dataloader.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #!/usr/bin/env python3
#
# Copytright 2021 Graviti. Licensed under MIT License.
#
# pylint: disable=invalid-name
"""Dataloader of the BSTLD dataset."""
import os
from ...dataset import Data, Dataset
from ...label import LabeledBox2D
DATASET_NAME = "BSTLD"
_LABEL_FILENAME_DICT = {
"test": "test.yaml",
"train": "train.yaml",
"additional": "additional_train.yaml",
}
def BSTLD(path: str) -> Dataset:
"""Dataloader of the BSTLD dataset.
Arguments:
path: The root directory of the dataset.
The file structure should be like::
<path>
rgb/
additional/
2015-10-05-10-52-01_bag/
<image_name>.jpg
...
...
test/
<image_name>.jpg
...
train/
2015-05-29-15-29-39_arastradero_traffic_light_loop_bag/
<image_name>.jpg
...
...
test.yaml
train.yaml
additional_train.yaml
Returns:
Loaded `Dataset` object.
"""
import yaml # pylint: disable=import-outside-toplevel
root_path = os.path.abspath(os.path.expanduser(path))
dataset = Dataset(DATASET_NAME)
dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
for mode, label_file_name in _LABEL_FILENAME_DICT.items():
segment = dataset.create_segment(mode)
label_file_path = os.path.join(root_path, label_file_name)
with open(label_file_path, encoding="utf-8") as fp:
labels = yaml.load(fp, yaml.FullLoader)
for label in labels:
if mode == "test":
# the path in test label file looks like:
# /absolute/path/to/<image_name>.png
file_path = os.path.join(root_path, "rgb", "test", label["path"].rsplit("/", 1)[-1])
else:
# the path in label file looks like:
# ./rgb/additional/2015-10-05-10-52-01_bag/<image_name>.png
file_path = os.path.join(root_path, *label["path"][2:].split("/"))
data = Data(file_path)
data.label.box2d = [
LabeledBox2D(
box["x_min"],
box["y_min"],
box["x_max"],
box["y_max"],
category=box["label"],
attributes={"occluded": box["occluded"]},
)
for box in label["boxes"]
]
segment.append(data)
return dataset
|
Note that after creating the dataset, you need to load the catalog.(L58) The catalog file “catalog.json” is in the same directory with dataloader file.
In this example, we create segments by dataset.create_segment(SEGMENT_NAME)
.
You can also create a default segment without giving a specific name, then its name
will be “”.
See this page for more details for about Box2D annotation details.
Note
The BSTLD dataloader above uses relative import(L11-12). However, when you write your own dataloader you should use regular import. And when you want to contribute your own dataloader, remember to use relative import.
Upload Dataset¶
After you finish the dataloader and organize the “BSTLD” into a
Dataset
object, you can upload it
to TensorBay for sharing, reuse, etc.
# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("BSTLD")
Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see this page for more details about version control.
Note
Commit operation can also be done on our GAS Platform.
Read Dataset¶
Now you can read “BSTLD” dataset from TensorBay.
dataset_client = gas.get_dataset("BSTLD")
In dataset “BSTLD”, there are three
Segments: train
, test
and additional
,
you can get the segment names by list them all.
list(dataset_client.list_segment_names())
You can get a segment by passing the required segment name.
from tensorbay.dataset import Segment
train_segment = Segment("train", dataset_client)
In the train segment, there is a sequence of data. You can get one by index.
data = train_segment[3]
Note
If the segment or fusion segment is created without given name, then its name will be “”.
In each data, there is a sequence of Box2D annotations. You can get one by index.
label_box2d = data.label.box2d[0]
category = label_box2d.category
attributes = label_box2d.attributes
There is only one label type in “BSTLD” dataset, which is box2d
.
The information stored in Category is
one of the category names in “categories” list of catalog.json. The information stored
in Attributes is one of the attributes in “attributes” list of catalog.json.
See this page for more details about the
structure of Box2D.
LeedsSportsPose¶
This topic describes how to manage the “Leeds Sports Pose” dataset.
“Leeds Sports Pose” is a dataset with Keypoints2D label type (Fig. 2). See this page for more details about this dataset.

The preview of an image with labels from “Leeds Sports Pose”.¶
Authorize a Client Object¶
First of all, create a GAS client.
from tensorbay import GAS
ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)
Create Dataset¶
Then, create a dataset client by passing the dataset name to the GAS client.
gas.create_dataset("LeedsSportsPose")
List Dataset Names¶
To check if you have created “Leeds Sports Pose” dataset, you can list all your available datasets. See this page for details.
list(gas.list_dataset_names())
Note
Note that method list_dataset_names()
returns an iterator, use list()
to transfer it to a “list”.
Organize Dataset¶
Now we describe how to organize the “Leeds Sports Pose” dataset by the Dataset
object before uploading it to TensorBay. It takes the following steps to organize “Leeds Sports Pose”.
Write the Catalog¶
The first step is to write the catalog. Catalog is a json file contains all label information of one dataset. See this page for more details. The only annotation type for “Leeds Sports Pose” is Keypoints2D.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | {
"KEYPOINTS2D": {
"keypoints": [
{
"number": 14,
"names": [
"Right ankle",
"Right knee",
"Right hip",
"Left hip",
"Left knee",
"Left ankle",
"Right wrist",
"Right elbow",
"Right shoulder",
"Left shoulder",
"Left elbow",
"Left wrist",
"Neck",
"Head top"
],
"skeleton": [
[0, 1],
[1, 2],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[9, 10],
[10, 11],
[12, 13],
[12, 2],
[12, 3]
],
"visible": "BINARY"
}
]
}
}
|
Write the Dataloader¶
The second step is to write the dataloader.
The function of dataloader is to read the dataset into a
Dataset
object.
The code block below displays the “Leeds Sports Pose” dataloader.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | #!/usr/bin/env python3
#
# Copyright 2021 Graviti. Licensed under MIT License.
#
# pylint: disable=invalid-name
"""Dataloader of the LeedsSportsPose dataset."""
import os
from ...dataset import Data, Dataset
from ...geometry import Keypoint2D
from ...label import LabeledKeypoints2D
from .._utility import glob
DATASET_NAME = "Leeds Sports Pose"
def LeedsSportsPose(path: str) -> Dataset:
"""Dataloader of the LeedsSportsPose dataset.
Arguments:
path: The root directory of the dataset.
The folder structure should be like::
<path>
joints.mat
images/
im0001.jpg
im0002.jpg
...
Returns:
Loaded `Dataset` object.
"""
from scipy.io import loadmat # pylint: disable=import-outside-toplevel
root_path = os.path.abspath(os.path.expanduser(path))
dataset = Dataset(DATASET_NAME)
dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
segment = dataset.create_segment()
mat = loadmat(os.path.join(root_path, "joints.mat"))
joints = mat["joints"].T
image_paths = glob(os.path.join(root_path, "images", "*.jpg"))
for image_path in image_paths:
data = Data(image_path)
data.label.keypoints2d = []
index = int(os.path.basename(image_path)[2:6]) - 1 # get image index from "im0001.jpg"
keypoints = LabeledKeypoints2D()
for keypoint in joints[index]:
keypoints.append( # pylint: disable=no-member # pylint issue #3131
Keypoint2D(keypoint[0], keypoint[1], int(not keypoint[2]))
)
data.label.keypoints2d.append(keypoints)
segment.append(data)
return dataset
|
Note that after creating the dataset, you need to load the catalog.(L42) The catalog file “catalog.json” is in the same directory with dataloader file.
In this example, we create a default segment without giving a specific name.
You can also create a segment by dataset.create_segment(SEGMENT_NAME)
.
See this page for more details for about Keypoints2D annotation details.
Note
The LeedsSportsPose dataloader above uses relative import(L11-13). However, when you write your own dataloader you should use regular import. And when you want to contribute your own dataloader, remember to use relative import.
Upload Dataset¶
After you finish the dataloader and organize the “Leeds Sports Pose” into a
Dataset
object, you can upload it
to TensorBay for sharing, reuse, etc.
# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("LeedsSportsPose")
Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see this page for more details about version control.
Note
Commit operation can also be done on our GAS Platform.
Read Dataset¶
Now you can read “Leeds Sports Pose” dataset from TensorBay.
dataset_client = gas.get_dataset("LeedsSportsPose")
In dataset “Leeds Sports Pose”, there is one default
Segments ""
(empty string). You can get it by passing the segment name.
from tensorbay.dataset import Segment
default_segment = Segment("", dataset_client)
In the train segment, there is a sequence of data. You can get one by index.
data = default_segment[0]
Note
If the segment or fusion segment is created without given name, then its name will be “”.
In each data, there is a sequence of Keypoints2D annotations. You can get one by index.
label_keypoints2d = data.label.keypoints2d[0]
x = data.label.keypoints2d[0][0].x
y = data.label.keypoints2d[0][0].y
v = data.label.keypoints2d[0][0].v
There is only one label type in “Leeds Sports Pose” dataset, which is keypoints2d
. The information stored in x
(y
) is
the x (y) coordinate of one keypoint of one keypoints list. The information stored in v
is
the visible status of one keypoint of one keypoints list. See this page
for more details about the structure of Keypoints2D.
Delete Dataset¶
To delete “Leeds Sports Pose”, run the following code:
gas.delete_dataset("LeedsSportsPose")
Neolix OD¶
This topic describes how to manage the “Neolix OD” dataset.
“Neolix OD” is a dataset with Box3D label type (Fig. 3). See this page for more details about this dataset.

The preview of a point cloud from “Neolix OD” with Box3D labels.¶
Authorize a Client Object¶
First of all, create a GAS client.
from tensorbay import GAS
ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)
Create Dataset¶
Then, create a dataset client by passing the dataset name to the GAS client.
gas.create_dataset("Neolix OD")
List Dataset Names¶
To check if you have created “Neolix OD” dataset, you can list all your available datasets. See this page for details.
list(gas.list_dataset_names())
Note
Note that method list_dataset_names()
returns an iterator, use list()
to transfer it to a “list”.
Organize Dataset¶
Now we describe how to organize the “Neolix OD” dataset by the Dataset
object before uploading it to TensorBay. It takes the following steps to organize “Neolix OD”.
Write the Catalog¶
The first step is to write the catalog. Catalog is a json file contains all label information of one dataset. See this page for more details. The only annotation type for “Neolix OD” is Box3D, and there are 15 Category types and 3 Attributes types.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | {
"BOX3D": {
"categories": [
{ "name": "Adult" },
{ "name": "Animal" },
{ "name": "Barrier" },
{ "name": "Bicycle" },
{ "name": "Bicycles" },
{ "name": "Bus" },
{ "name": "Car" },
{ "name": "Child" },
{ "name": "Cyclist" },
{ "name": "Motorcycle" },
{ "name": "Motorcyclist" },
{ "name": "Trailer" },
{ "name": "Tricycle" },
{ "name": "Truck" },
{ "name": "Unknown" }
],
"attributes": [
{
"name": "Alpha",
"type": "number",
"description": "Angle of view"
},
{
"name": "Occlusion",
"enum": [0, 1, 2],
"description": "It indicates the degree of occlusion of objects by other obstacles"
},
{
"name": "Truncation",
"type": "boolean",
"description": "It indicates whether the object is truncated by the edge of the image"
}
]
}
}
|
Write the Dataloader¶
The second step is to write the dataloader.
The function of dataloader is to read the dataset into a
Dataset
object.
The code block below displays the “Neolix OD” dataloader.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | #!/usr/bin/env python3
#
# Copyright 2021 Graviti. Licensed under MIT License.
#
# pylint: disable=invalid-name
"""Dataloader of the NeolixOD dataset."""
import os
from quaternion import from_rotation_vector
from ...dataset import Data, Dataset
from ...label import LabeledBox3D
from .._utility import glob
DATASET_NAME = "Neolix OD"
def NeolixOD(path: str) -> Dataset:
"""Dataloader of the NeolixOD dataset.
Arguments:
path: The root directory of the dataset.
The file structure should be like::
<path>
bins/
<id>.bin
labels/
<id>.txt
...
Returns:
Loaded `Dataset` object.
"""
root_path = os.path.abspath(os.path.expanduser(path))
dataset = Dataset(DATASET_NAME)
dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
segment = dataset.create_segment()
point_cloud_paths = glob(os.path.join(root_path, "bins", "*.bin"))
for point_cloud_path in point_cloud_paths:
data = Data(point_cloud_path)
data.label.box3d = []
point_cloud_id = os.path.basename(point_cloud_path)[:6]
label_path = os.path.join(root_path, "labels", f"{point_cloud_id}.txt")
with open(label_path, encoding="utf-8") as fp:
for label_value_raw in fp:
label_value = label_value_raw.rstrip().split()
label = LabeledBox3D(
category=label_value[0],
attributes={
"Occlusion": int(label_value[1]),
"Truncation": bool(int(label_value[2])),
"Alpha": float(label_value[3]),
},
size=[float(label_value[10]), float(label_value[9]), float(label_value[8])],
translation=[
float(label_value[11]),
float(label_value[12]),
float(label_value[13]) + 0.5 * float(label_value[8]),
],
rotation=from_rotation_vector((0, 0, float(label_value[14]))),
)
data.label.box3d.append(label)
segment.append(data)
return dataset
|
Note that after creating the dataset, you need to load the catalog.(L39) The catalog file “catalog.json” is in the same directory with dataloader file.
In this example, we create segments by dataset.create_segment(SEGMENT_NAME)
.
You can also create a default segment without giving a specific name, then its name
will be “”.
See this page for more details for about Box3D annotation details.
Note
The Neolix OD dataloader above uses relative import(L11-12). However, when you write your own dataloader you should use regular import. And when you want to contribute your own dataloader, remember to use relative import.
Upload Dataset¶
After you finish the dataloader and organize the “Neolix OD” into a
Dataset
object, you can upload it
to TensorBay for sharing, reuse, etc.
# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("Neolix OD")
Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see this page for more details about version control.
Note
Commit operation can also be done on our GAS Platform.
Read Dataset¶
Now you can read “Neolix OD” dataset from TensorBay.
dataset_client = gas.get_dataset("Neolix OD")
In dataset “Neolix OD”, there is one default
Segment: ""
(empty string).
You can get a segment by passing the required segment name.
from tensorbay.dataset import Segment
default_segment = Segment("", dataset_client)
In the default segment, there is a sequence of data. You can get one by index.
data = default_segment[0]
Note
If the segment or fusion segment is created without given name, then its name will be “”.
In each data, there is a sequence of Box3D annotations. You can get one by index.
label_box3d = data.label.box3d[0]
category = label_box3d.category
attributes = label_box3d.attributes
There is only one label type in “Neolix OD” dataset, which is box3d
.
The information stored in Category is
one of the category names in “categories” list of catalog.json.
The information stored in Attributes
is one of the attributes in “attributes” list of catalog.json.
See this page for more details about the structure of Box3D.
THCHS-30¶
This topic describes how to manage the “THCHS-30” dataset.
“THCHS-30” is a dataset with Sentence label type. See this page for more details about this dataset.
Authorize a Client Object¶
First of all, create a GAS client.
from tensorbay import GAS
ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)
Create Dataset¶
Then, create a dataset client by passing the dataset name to the GAS client.
gas.create_dataset("THCHS-30")
List Dataset Names¶
To check if you have created “THCHS-30” dataset, you can list all your available datasets. See this page for details.
list(gas.list_dataset_names())
Note
Note that method list_dataset_names()
returns an iterator, use list()
to transfer it to a “list”.
Organize Dataset¶
Now we describe how to organize the “THCHS-30” dataset by the Dataset
object before uploading it to TensorBay. It takes the following steps to organize “THCHS-30”.
Write the Catalog¶
The first step is to write the catalog.
Typically, Catalog is a json file contains all label information of one dataset.
See this page for more details.
However the catalog of THCHS-30
is too large, so we need to load the subcatalog by the raw file
and map it to catalog, See code block below for more details.
Write the Dataloader¶
The second step is to write the dataloader.
The function of dataloader is to read the dataset into a
Dataset
object.
The code block below displays the “THCHS-30” dataloader.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | #!/usr/bin/env python3
#
# Copyright 2021 Graviti. Licensed under MIT License.
#
# pylint: disable=invalid-name
"""Dataloader of the THCHS-30 dataset."""
import os
from itertools import islice
from typing import List
from ...dataset import Data, Dataset
from ...label import LabeledSentence, SentenceSubcatalog, Word
from .._utility import glob
DATASET_NAME = "THCHS-30"
_SEGMENT_NAME_LIST = ("train", "dev", "test")
def THCHS30(path: str) -> Dataset:
"""Dataloader of the THCHS-30 dataset.
Arguments:
path: The root directory of the dataset.
The file structure should be like::
<path>
lm_word/
lexicon.txt
data/
A11_0.wav.trn
...
dev/
A11_101.wav
...
train/
test/
Returns:
Loaded `Dataset` object.
"""
dataset = Dataset(DATASET_NAME)
dataset.catalog.sentence = _get_subcatalog(os.path.join(path, "lm_word", "lexicon.txt"))
for segment_name in _SEGMENT_NAME_LIST:
segment = dataset.create_segment(segment_name)
for filename in glob(os.path.join(path, segment_name, "*.wav")):
data = Data(filename)
label_file = os.path.join(path, "data", os.path.basename(filename) + ".trn")
data.label.sentence = _get_label(label_file)
segment.append(data)
return dataset
def _get_label(label_file: str) -> List[LabeledSentence]:
with open(label_file, encoding="utf-8") as fp:
labels = ((Word(text=text) for text in texts.split()) for texts in fp)
return [LabeledSentence(*labels)]
def _get_subcatalog(lexion_path: str) -> SentenceSubcatalog:
subcatalog = SentenceSubcatalog()
with open(lexion_path, encoding="utf-8") as fp:
for line in islice(fp, 4, None):
subcatalog.append_lexicon(line.strip().split())
return subcatalog
|
Normally, after creating the dataset,
you need to load the catalog. However,
in this example, there is no catalog.json
file, because the lexion of
THCHS-30
is too large (See more details of lexion in Sentence).
Therefore, We load subcatalog from the raw file lexicon.txt and map it to have the catalog.(L45)
See this page for more details about Sentence annotation details.
Note
The THCHS-30 dataloader above uses relative import(L13-14). However, when you write your own dataloader you should use regular import. And when you want to contribute your own dataloader, remember to use relative import.
Upload Dataset¶
After you finish the dataloader and organize the “THCHS-30” into a
Dataset
object, you can upload it
to TensorBay for sharing, reuse, etc.
# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("THCHS-30")
Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see Version Control for more details.
Note
Commit operation can alse be done on our GAS Platform.
Read Dataset¶
Now you can read “THCHS-30” dataset from TensorBay.
dataset_client = gas.get_dataset("THCHS-30")
In dataset “THCHS-30”, there are three
Segments:
dev
, train
and test
,
you can get the segment names by list them all.
list(dataset_client.list_segment_names())
You can get a segment by passing the required segment name.
from tensorbay.dataset import Segment
dev_segment = Segment("dev", dataset_client)
In the dev segment, there is a sequence of data. You can get one by index.
data = dev_segment[0]
Note
If the segment or fusion segment is created without given name, then its name will be “”.
In each data, there is a sequence of Sentence annotations. You can get one by index.
labeled_sentence = data.label.sentence[0]
sentence = labeled_sentence.sentence
spell = labeled_sentence.spell
phone = labeled_sentence.phone
There is only one label type in “THCHS-30” dataset, which is Sentence
. It contains
sentence
, spell
and phone
information. See this page for
more details about the structure of Sentence.
20 Newsgroups¶
This topic describes how to manage the “20 Newsgroups” dataset.
“20 Newsgroups” is a dataset with Classification label type. See this page for more details about this dataset.
Authorize a Client Object¶
First of all, create a GAS client.
from tensorbay import GAS
ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)
Create Dataset¶
Then, create a dataset client by passing the dataset name to the GAS client.
gas.create_dataset("20 Newsgroups")
List Dataset Names¶
To check if you have created “20 Newsgroups” dataset, you can list all your available datasets. See this page for details.
list(gas.list_dataset_names())
Note
Note that method list_dataset_names()
returns an iterator, use list()
to transfer it to a “list”.
Organize Dataset¶
Now we describe how to organize the “20 Newsgroups” dataset by the Dataset
object before uploading it to TensorBay. It takes the following steps to organize “20 Newsgroups”.
Write the Catalog¶
The first step is to write the catalog. Catalog is a json file contains all label information of one dataset. See this page for more details. The only annotation type for “20 Newsgroups” is Classification, and there are 20 Category types.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | {
"CLASSIFICATION": {
"categories": [
{ "name": "alt.atheism" },
{ "name": "comp.graphics" },
{ "name": "comp.os.ms-windows.misc" },
{ "name": "comp.sys.ibm.pc.hardware" },
{ "name": "comp.sys.mac.hardware" },
{ "name": "comp.windows.x" },
{ "name": "misc.forsale" },
{ "name": "rec.autos" },
{ "name": "rec.motorcycles" },
{ "name": "rec.sport.baseball" },
{ "name": "rec.sport.hockey" },
{ "name": "sci.crypt" },
{ "name": "sci.electronics" },
{ "name": "sci.med" },
{ "name": "sci.space" },
{ "name": "soc.religion.christian" },
{ "name": "talk.politics.guns" },
{ "name": "talk.politics.mideast" },
{ "name": "talk.politics.misc" },
{ "name": "talk.religion.misc" }
]
}
}
|
Note
The categories in dataset “20 Newsgroups” have parent-child relationship, and it use “.” to sparate different levels.
Write the Dataloader¶
The second step is to write the dataloader.
The function of dataloader is to read the dataset into a
Dataset
object.
The code block below displays the “20 Newsgroups” dataloader.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | #!/usr/bin/env python3
#
# Copyright 2021 Graviti. Licensed under MIT License.
#
# pylint: disable=invalid-name
"""Dataloader of the Newsgroups20 dataset."""
import os
from ...dataset import Data, Dataset
from ...label import Classification
from .._utility import glob
DATASET_NAME = "20 Newsgroups"
SEGMENT_DESCRIPTION_DICT = {
"20_newsgroups": "Original 20 Newsgroups data set",
"20news-bydate-train": (
"Training set of the second version of 20 Newsgroups, "
"which is sorted by date and has duplicates and some headers removed"
),
"20news-bydate-test": (
"Test set of the second version of 20 Newsgroups, "
"which is sorted by date and has duplicates and some headers removed"
),
"20news-18828": (
"The third version of 20 Newsgroups, which has duplicates removed "
"and includes only 'From' and 'Subject' headers"
),
}
def Newsgroups20(path: str) -> Dataset:
"""Dataloader of the Newsgroups20 dataset.
Arguments:
path: The root directory of the dataset.
The folder structure should be like::
<path>
20news-18828/
alt.atheism/
49960
51060
51119
51120
...
comp.graphics/
comp.os.ms-windows.misc/
comp.sys.ibm.pc.hardware/
comp.sys.mac.hardware/
comp.windows.x/
misc.forsale/
rec.autos/
rec.motorcycles/
rec.sport.baseball/
rec.sport.hockey/
sci.crypt/
sci.electronics/
sci.med/
sci.space/
soc.religion.christian/
talk.politics.guns/
talk.politics.mideast/
talk.politics.misc/
talk.religion.misc/
20news-bydate-test/
20news-bydate-train/
20_newsgroups/
Returns:
Loaded `Dataset` object.
"""
root_path = os.path.abspath(os.path.expanduser(path))
dataset = Dataset(DATASET_NAME)
dataset.load_catalog(os.path.join(os.path.dirname(__file__), "catalog.json"))
for segment_name, segment_description in SEGMENT_DESCRIPTION_DICT.items():
segment_path = os.path.join(root_path, segment_name)
if not os.path.isdir(segment_path):
continue
segment = dataset.create_segment(segment_name)
segment.description = segment_description
text_paths = glob(os.path.join(segment_path, "*", "*"))
for text_path in text_paths:
category = os.path.basename(os.path.dirname(text_path))
data = Data(
text_path, target_remote_path=f"{category}/{os.path.basename(text_path)}.txt"
)
data.label.classification = Classification(category)
segment.append(data)
return dataset
|
Note that after creating the dataset, you need to load the catalog. (L77) The catalog file “catalog.json” is in the same directory with dataloader file.
In this example, we create segments by dataset.create_segment(SEGMENT_NAME)
.
You can also create a default segment without giving a specific name, then its name
will be “”.
See this page for more details for about Classification annotation details.
Note
The 20 Newsgroups dataloader above uses relative import(L11-12). However, when you write your own dataloader you should use regular import as shown below. And when you want to contribute your own dataloader, remember to use relative import.
Note
The data in “20 Newsgroups” do not have extensions so that we add a “txt” extension to the remote path of each data file(L92) to ensure the loaded dataset could function well on TensorBay.
Upload Dataset¶
After you finish the dataloader and organize the “20 Newsgroups” into a
Dataset
object, you can upload it
to TensorBay for sharing, reuse, etc.
# dataset is the one you initialized in "Organize Dataset" section
dataset_client = gas.upload_dataset(dataset, jobs=8, skip_uploaded_files=False)
dataset_client.commit("20 Newsgroups")
Remember to execute the commit step after uploading. If needed, you can re-upload and commit again. Please see this page for more details about version control.
Note
Commit operation can also be done on our GAS Platform.
Read Dataset¶
Now you can read “20 Newsgroups” dataset from TensorBay.
dataset_client = gas.get_dataset("20 Newsgroups")
In dataset “20 Newsgroups”, there are four
Segments: 20news-18828
,
20news-bydate-test
and 20news-bydate-train
, 20_newsgroups
you can get the segment names by list them all.
list(dataset_client.list_segment_names())
You can get a segment by passing the required segment name.
from tensorbay.dataset import Segment
segment_20news_18828 = Segment("20news-18828", dataset_client)
In the 20news-18828 segment, there is a sequence of data. You can get one by index.
data = segment_20news_18828[0]
Note
If the segment or fusion segment is created without given name, then its name will be “”.
In each data, there is a sequence of Classification annotations. You can get one by index.
category = data.label.classification.category
There is only one label type in “20 Newsgroups” dataset, which is Classification
.
The information stored in Category is
one of the category names in “categories” list of catalog.json.
See this page for more details about the
structure of Classification.
Delete Dataset¶
To delete “20 Newsgroups”, run the following code:
gas.delete_dataset("20 Newsgroups")
Read “Dataset” Class¶
This topic describes how to read the Dataset
class after you have
organized the “BSTLD” dataset.
See this page for more details about this dataset.
As mentioned in Dataset Management, you need to write a
dataloader to get a Dataset
.
However, there are already a number of dataloaders in TensorBay SDK provided by the community.
Thus, instead of writing, you can just import an available dataloader.
The local directory structure for “BSTLD” should be like:
<path>
rgb/
additional/
2015-10-05-10-52-01_bag/
<image_name>.jpg
...
...
test/
<image_name>.jpg
...
train/
2015-05-29-15-29-39_arastradero_traffic_light_loop_bag/
<image_name>.jpg
...
...
test.yaml
train.yaml
additional_train.yaml
from tensorbay.opendataset import BSTLD
dataset = BSTLD("path/to/dataset/directory")
Warning
Dataloaders provided by the community work well only with the original dataset directory structure. Downloading datasets from either official website or Graviti Opendatset Platform is highly recommended.
TensorBay supplies two methods to fetch segment from dataset.
train_segment = dataset.get_segment_by_name("train")
first_segment = dataset[0]
The segment you get now is the same as the one you read from TensorBay. In the train segment, there is a sequence of data. You can get one by index.
data = train_segment[3]
In each data, there is a sequence of Box2D annotations. You can get one by index.
label_box2d = data.label.box2d[0]
category = label_box2d.category
attributes = label_box2d.attributes
Dataset Management¶
This topic describes the key operations towards your datasets, including:
Organize Dataset¶
TensorBay SDK supports methods to organize your local datasets into uniform TensorBay dataset strucutre (ref). The typical steps to organize a local dataset:
First, write a dataloader (ref) to load the whole local dataset into a
Dataset
instance,Second, write a catalog (ref) to store all the label meta information inside a dataset.
Note
A catalog is needed only if there is label information inside the dataset.
This part is an example for organizing a dataset.
Upload Dataset¶
There are two usages for the organized local dataset
(i.e. the initialized Dataset
instance):
Upload it to TensorBay.
Use it directly.
In this section, we mainly discuss the uploading operation. See this example for details about the latter usage.
There are plenty of benefits of uploading local datasets to TensorBay.
Reuse: you can reuse your datasets without preprocessing again.
Share: you can share them with your team or the community.
Preview: you can preview your datasets without coding.
Version control: you can upload different versions of one dataset and control them conveniently.
This part is an example for uploading a dataset.
Read Dataset¶
There are two types of datasets you can read from TensorBay:
Datasets uploaded by yourself as mentioned in Upload Dataset.
Datasets uplaoded by the community (i.e. the open datasets).
Note
Before reading a dataset uploaded by the community, you need to fork it first.
Note
You can visit our Graviti AI Service(GAS) platform to check the dataset details, such as dataset name, version information, etc.
This part is an example for reading a dataset.
Version Control¶
TensorBay currently supports the linear version control. A new version of a dataset can be built upon the previous version. Figure. 4 demonstrates the relations between different versions of a dataset.

The relations between different versions of a dataset.¶
Create Draft And Commit¶
The version control is based on the draft and commit.
The GAS
is actually responsible for operating the datasets, while
the DatasetClient
is for operating content of one dataset
in the draft or commit. A certain client can only work
in the draft or commit. Also, the dataset client supports the function of version control. You can create
and close the draft with the given methods in the dataset client.
from tensorbay import GAS
ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)
# dataset is the original dataset.
# actually when calling "gas.upload_dataset(dataset.name)", a default draft "" is created.
gas.create_dataset(dataset.name)
dataset_client = gas.upload_dataset(dataset)
dataset_client.commit("first_commit")
# segment contains extra data that you want to add to the dataset.
# create the draft.
dataset_client.create_draft("draft-2")
dataset_client.upload_segment(segment)
# commit the draft and the draft will be deleted.
dataset_client.commit("second_commit")
Checkout¶
You can checkout to other draft with draft number or to commit with commit id through
checkout()
in the DatasetClient
. The draft number can be found through
list_draft_titles_and_numbers()
and the commit id can be can be found
through the web page.
from tensorbay import GAS
ACCESS_KEY = "Accesskey-*****"
gas = GAS(ACCESS_KEY)
dataset_client = gas.create_dataset(dataset.name)
dataset_client.create_draft("draft-1")
dataset_client.commit("first_commit")
dataset_client.create_draft("draft-2")
dataset_client.commit("second_commit")
dataset_client.create_draft("draft-3")
# list draft numbers.
drafts = list(dataset_client.list_draft_titles_and_numbers())
# checkout to the draft.
dataset_client.checkout(draft_number=draft_number)
# checkout to the commit.
dataset_client.checkout(commit=commit_id)
Getting Started with CLI¶
The TensorBay Command Line Interface is a tool to operate on your datasets. It supports Windows, Linux, and Mac platforms.
You can use TensorBay CLI to:
Create and delete dataset.
List data, segments and datasets on TensorBay.
Upload data to TensorBay.
TBRN¶
TensorBay Resource Name(TBRN) uniquely defines the data stored in TensorBay.
TBRN begins with tb:
. Default segment can be defined as ""
(empty string).
The following is the general format for TBRN:
tb:[dataset_name]:[segment_name]://[remote_path]
Dataset Management¶
TensorBay CLI offers following sub-commands to manage your dataset. (Table. 2)
Sub-Commands |
Description |
---|---|
create |
Create a dataset |
ls |
List data, segments and datasets |
delete |
Delete a dataset |
Create dataset¶
The basic structure of the sub-command to create a dataset with given name:
$ gas create [tbrn]
tbrn:
tb:[dataset_name]
Take BSTLD for example:
$ gas create tb:BSTLD
Read Dataset¶
The basic structure of the sub-command to List data, segments and datasets:
$ gas ls [Options] [tbrn]
Options:
-a, --all List all files under all segments.
Only works when [tbrn] is tb:[dataset_name].
tbrn:
None
tb:[dataset_name]
tb:[dataset_name]:[segment_name]
tb:[dataset_name]:[segment_name]://[remote_path]
If the path is empty, list the names of all datasets. You can list data in the following ways:
$ gas ls
$ gas ls tb:BSTLD
$ gas ls -a tb:BSTLD
train
segment of BSTLD.$ gas ls tb:BSTLD:train
Glossary¶
accesskey¶
An accesskey is an access credential for identification when using TensorBay to operate on your dataset.
To obtain an accesskey, you need to log in to Graviti AI Service(GAS) and visit the developer page to create one.
For the usage of accesskey via Tensorbay SDK or CLI, please see SDK authorization or CLI configration.
dataset¶
A uniform dataset format defined by Tensorbay, which only contains one type of data collected from one sensor or without sensor information.
The corresponding class of dataset is Dataset
.
See Dataset Structure for more details.
dataloader¶
A function that can organize files within a formatted folder
into a Dataset
instance
The only input of the function should be a str indicating the path to the folder containing the dataset,
and the return value should be the loaded Dataset
from tensorbay.dataset import Dataset
def DatasetName(path: str) -> Dataset:
"""The dataloader of <Dataset Name> dataset.
Arguments:
path: The root directory of the dataset.
The file structure should be like::
<path>
structure under the path
Returns:
The loaded 'Dataset' object.
"""
dataset = Dataset("<Dataset Name>")
... # organize the files( and the labels) under the path to the dataset
return dataset
Note
The name of the dataloader function is a unique indentification of the dataset. It is in upper camel case and is generally obtained by removing special characters from the dataset name.
Take Dogs vs Cats dataset as an example,
the name of its dataloader function is DogsVsCats()
.
See more dataloader examples in tensorbay.opendataset.
TBRN¶
TBRN is the abbreviation for TensorBay Resource Name, which represents the data or a collection of data stored in TensorBay uniquely.
Note that TBRN is only used in CLI.
TBRN begins with tb:
, followed by the dataset name, the segment name and the file name.
The following is the general format for TBRN:
tb:[dataset_name]:[segment_name]://[remote_path]
Suppose we have an image 000000.jpg
under the default segment of a dataset named example
,
then we have the TBRN of this image:
tb:example:://000000.jpg
Note
Default segment is defined as ""
(empty string).
commit¶
Similar with Git, a commit is a version of a dataset, which contains the changes compared with the former commit. You can view a certain commit of a dataset based on the given commit ID.
A commit is readable, but is not writable. Thus, only read operations such as getting catalog, files and labels are allowed. To change a dataset, please create a new commit. See draft for details.
On the other hand, “commit” also represents the action to save the changes inside a draft into a commit.
draft¶
Similar with Git, a draft is a workspace in which changing the dataset is allowed.
A draft is created based on a commit, and the changes inside it will be made into a commit.
There are scenarios when modifications of a dataset are required, such as correcting errors, enlarging dataset, adding more types of labels, etc. Under these circumstances, you can create a draft, edit the dataset and commit the draft.
Dataset Structure¶
For ease of use, TensorBay defines a uniform dataset format. In this topic, we explain the related concepts. The TensorBay dataset format looks like:
dataset
├── catalog
│ ├── subcatalog
│ ├── subcatalog
│ └── ...
├── segment
│ ├── data
│ ├── data
│ └── ...
├── segment
│ ├── data
│ ├── data
│ └── ...
└── ...
dataset¶
Dataset is the topmost concept in TensorBay dataset format. Each dataset includes a catalog and a certain number of segments.
The corresponding class of dataset is Dataset
.
catalog¶
Catalog is used for storing label meta information. It collects all the labels corresponding to a dataset. There could be one or several subcatalogs (Label Format) under one catalog, each of which only stores label meta information of one label type.
For example, there is only one subcatalog (“BOX3D”) in the catalog of dataset Neolix OD.
{
"BOX3D": {
"categories": [
{ "name": "Adult" },
{ "name": "Animal" },
{ "name": "Barrier" },
{ "name": "Bicycle" },
{ "name": "Bicycles" },
{ "name": "Bus" },
{ "name": "Car" },
{ "name": "Child" },
{ "name": "Cyclist" },
{ "name": "Motorcycle" },
{ "name": "Motorcyclist" },
{ "name": "Trailer" },
{ "name": "Tricycle" },
{ "name": "Truck" },
{ "name": "Unknown" }
],
"attributes": [
{
"name": "Alpha",
"type": "number",
"description": "Angle of view"
},
{
"name": "Occlusion",
"enum": [0, 1, 2],
"description": "It indicates the degree of occlusion of objects by other obstacles"
},
{
"name": "Truncation",
"type": "boolean",
"description": "It indicates whether the object is truncated by the edge of the image"
}
]
}
}
Note that catalog is not needed if there is no label information in a dataset.
Label Format¶
TensorBay supports multiple types of labels.
Each Data
object
can have multiple types of label
.
And each type of label
is supported with a specific label
class,
and has a corresponding subcatalog class.
supported label types |
label classes |
subcatalog classes |
---|---|---|
|
Common Label Properties¶
Different types of labels contain differenct aspects of annotation information about the data. Some are more general, and some are unique to a specific label type.
We first introduce three common properties of a label, and the unique ones will be explained under the corresponding type of label.
Here we take a 2D box label as an example:
>>> from tensorbay.label import LabeledBox2D
>>> label = LabeledBox2D(
... 10, 20, 30, 40,
... category="category",
... attributes={"attribute_name": "attribute_value"},
... instance="instance_ID"
... )
Category¶
Category is a string indicating the class of the labeled object.
>>> label.category
'data_category'
Attributes¶
Attributes are the additional information about this data, and there is no limit on the number of attributes.
The attribute names and values are stored in key-value pairs.
>>> label.attributes
{'attribute_name': 'attribute_value'}
Instance¶
Instance is the unique id for the object inside of the label, which is mostly used for tracking tasks.
>>> label.instance
"instance_ID"
Common Subcatalog Properties¶
Before creating a label or adding a label to data, you need to define the annotation rules of the specific label type inside the dataset, which is subcatalog.
Different label types have different subcatalog classes.
Here we take Box2DSubcatalog
as an example
to describe some common features of subcatalog.
>>> from tensorbay.label import Box2DSubcatalog
>>> box2d_subcatalog = Box2DSubcatalog(is_tracking=True)
TrackingInformation¶
If the label of this type in the dataset has the information of instance IDs, then the subcatalog should set a flag to show its support for tracking information.
You can pass True
to the is_tracking
parameter while creating the subcatalog,
or you can set the is_tracking
attr after initialization.
>>> box2d_subcatalog.is_tracking = True
CategoryInformation¶
If the label of this type in the dataset has category, then the subcatalog should contain all the optional categories.
Each category of a label appeared in the dataset should be within the categories of the subcatalog.
You can add category information to the subcatalog.
>>> box2d_subcatalog.add_category(name="cat", description="The Flerken")
>>> box2d_subcatalog.categories
NameOrderedDict {
'cat': CategoryInfo("cat")
}
We use CategoryInfo
to describe
a category.
See details in CategoryInfo
.
AttributesInformation¶
If the label of this type in the dataset has attributes, then the subcatalog should contain all the rules for different attributes.
Each attribute of a label appeared in the dataset should follow the rules set in the attributes of the subcatalog.
You can add attribute information to the subcatalog.
>>> box2d_subcatalog.add_attribute(
... name="attribute_name",
... type_="number",
... maximum=100,
... minimum=0,
... description="attribute description"
... )
>>> box2d_subcatalog.categories
NameOrderedDict {
'attribute_name': AttributeInfo("attribute_name")(...)
}
We use AttributeInfo
to describe the rules of an
attribute, which refers to the Json schema method.
See details in AttributeInfo
.
Other unique subcatalog features will be explained in the corresponding label type section.
Classification¶
Classification is to classify data into different categories.
It is the annotation for the entire file, so each data can only be assigned with one classification label.
Classification labels applies to different types of data, such as images and texts.
The structure of one classification label is like:
{
"category": <str>
"attributes": {
<key>: <value>
...
...
}
}
To create a Classification
label:
>>> from tensorbay.label import Classification
>>> classification_label = Classification(
... category="data_category",
... attributes={"attribute_name": "attribute_value"}
... )
>>> classification_label
Classification(
(category): 'data_category',
(attributes): {...}
)
Classification.Attributes¶
The attributes of the entire data file. See Attributes for details.
Note
There must be either a category or attributes in one classification label.
ClassificationSubcatalog¶
Before adding the classification label to data,
ClassificationSubcatalog
should be defined.
ClassificationSubcatalog
has categories and attributes information,
see CategoryInformation and
AttributesInformation for details.
To add a Classification
label to one data:
>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.classification = classification_label
Note
One data can only have one classification label.
Box2D¶
Box2D is a type of label with a 2D bounding box on an image. It’s usually used for object detection task.
Each data can be assigned with multiple Box2D label.
The structure of one Box2D label is like:
{
"box2d": {
"xmin": <float>
"ymin": <float>
"xmax": <float>
"ymax": <float>
},
"category": <str>
"attributes": {
<key>: <value>
...
...
},
"instance": <str>
}
To create a LabeledBox2D
label:
>>> from tensorbay.label import LabeledBox2D
>>> box2d_label = LabeledBox2D(
... xmin, ymin, xmax, ymax,
... category="category",
... attributes={"attribute_name": "attribute_value"},
... instance="instance_ID"
... )
>>> box2d_label
LabeledBox2D(xmin, ymin, xmax, ymax)(
(category): 'category',
(attributes): {...}
(instance): 'instance_ID'
)
Box2D.box2d¶
LabeledBox2D
extends Box2D
.
To construct a LabeledBox2D
instance with only the geometry
information,
you can use the coordinates of the top-left and bottom-right vertexes of the 2D bounding box,
or you can use the coordinate of the top-left vertex, the height and the width of the bounding box.
>>> LabeledBox2D(10, 20, 30, 40)
LabeledBox2D(10, 20, 30, 40)()
>>> LabeledBox2D(x=10, y=20, width=20, height=20)
LabeledBox2D(10, 20, 30, 40)()
It contains the basic geometry information of the 2D bounding box.
>>> box2d_label.xmin
10
>>> box2d_label.ymin
20
>>> box2d_label.xmax
30
>>> box2d_label.ymax
40
>>> box2d_label.br
Vector2D(30, 40)
>>> box2d_label.tl
Vector2D(10, 20)
>>> box2d_label.area()
400
Box2D.Attributes¶
Attributes are the additional information about this object, which are stored in key-value pairs. See Attributes for details.
Box2D.Instance¶
Instance is the unique ID for the object inside of the 2D bounding box, which is mostly used for tracking tasks. See Instance for details.
Box2DSubcatalog¶
Before adding the Box2D labels to data,
Box2DSubcatalog
should be defined.
Box2DSubcatalog
has categories, attributes and tracking information,
see CategoryInformation,
AttributesInformation and
TrackingInformation for details.
To add a LabeledBox2D
label to one data:
>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.box2d = []
>>> data.label.box2d.append(box2d_label)
Note
One data may contain multiple Box2D labels,
so the Data.label.box2d
must be a list.
Box3D¶
Box3D is a type of label with a 3D bounding box on point cloud, which is often used for 3D object detection.
Currently, Box3D labels applies to point data only.
Each point cloud can be assigned with multiple Box3D label.
The structure of one Box3D label is like:
{
"box3d": {
"translation": {
"x": <float>
"y": <float>
"z": <float>
},
"rotation": {
"w": <float>
"x": <float>
"y": <float>
"z": <float>
},
"size": {
"x": <float>
"y": <float>
"z": <float>
}
},
"category": <str>
"attributes": {
<key>: <value>
...
...
},
"instance": <str>
}
To create a LabeledBox3D
label:
>>> from tensorbay.label import LabeledBox3D
>>> box3d_label = LabeledBox3D(
... translation=[0, 0, 0],
... rotation=[1, 0, 0, 0],
... size=[10, 20, 30],
... category="category",
... attributes={"attribute_name": "attribute_value"},
... instance="instance_ID"
... )
>>> box3d_label
LabeledBox3D(
(translation): Vector3D(0, 0, 0),
(rotation): quaternion(1.0, 0.0, 0.0, 0.0),
(size): Vector3D(10, 20, 30),
(category): 'category',
(attributes): {...},
(instance): 'instance_ID'
)
Box3D.box3d¶
LabeledBox3D
extends Box3D
.
To construct a LabeledBox3D
instance with only the geometry
information,
you can use the transform matrix and the size of the 3D bounding box,
or you can use translation and rotation to represent the transform of the 3D bounding box.
>>> LabeledBox3D(
... [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]],
... size=[10, 20, 30],
... )
LabeledBox3D(
(translation): Vector3D(0, 0, 0),
(rotation): quaternion(1.0, -0.0, -0.0, -0.0),
(size): Vector3D(10, 20, 30)
)
>>> LabeledBox3D(
... translation=[0, 0, 0],
... rotation=[1, 0, 0, 0],
... size=[10, 20, 30],
... )
LabeledBox3D(
(translation): Vector3D(0, 0, 0),
(rotation): quaternion(1.0, 0.0, 0.0, 0.0),
(size): Vector3D(10, 20, 30)
)
It contains the basic geometry information of the 3D bounding box.
>>> box3d_label.transform
Transform3D(
(translation): Vector3D(0, 0, 0),
(rotation): quaternion(1.0, 0.0, 0.0, 0.0)
)
>>> box3d_label.translation
Vector3D(0, 0, 0)
>>> box3d_label.rotation
quaternion(1.0, 0.0, 0.0, 0.0)
>>> box3d_label.size
Vector3D(10, 20, 30)
>>> box3d_label.volumn()
6000
Box3D.Attributes¶
Attributes are the additional information about this object, which are stored in key-value pairs. See Attributes for details.
Box3D.Instance¶
Instance is the unique id for the object inside of the 3D bounding box, which is mostly used for tracking tasks. See Instance for details.
Box3DSubcatalog¶
Before adding the Box2D labels to data,
Box2DSubcatalog
should be defined.
Box2DSubcatalog
has categories, attributes and tracking information,
see CategoryInformation,
AttributesInformation and
TrackingInformation for details.
To add a LabeledBox3D
label to one data:
>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.box3d = []
>>> data.label.box3d.append(box3d_label)
Note
One data may contain multiple Box3D labels,
so the Data.label.box3d
must be a list.
Keypoints2D¶
Keypoints2D is a type of label with a set of 2D keypoints. It is often used for animal and human pose estimation.
Keypoints2D labels mostly applies to images.
Each data can be assigned with multiple Keypoints2D labels.
The structure of one Keypoints2D label is like:
{
"keypoints2d": [
{ "x": <float>
"y": <float>
"v": <int>
},
...
...
],
"category": <str>
"attributes": {
<key>: <value>
...
...
},
"instance": <str>
}
To create a LabeledKeypoints2D
label:
>>> from tensorbay.label import LabeledKeypoints2D
>>> keypoints2d_label = LabeledKeypoints2D(
... [[10, 20], [15, 25], [20, 30]],
... category="category",
... attributes={"attribute_name": "attribute_value"},
... instance="instance_ID"
... )
>>> keypoints2d_label
LabeledKeypoints2D [
Keypoint2D(10, 20),
Keypoint2D(15, 25),
Keypoint2D(20, 30)
](
(category): 'category',
(attributes): {...},
(instance): 'instance_ID'
)
Keypoints2D.keypoints2d¶
LabeledKeypoints2D
extends
Keypoints2D
.
To construct a LabeledKeypoints2D
instance with only the geometry
information,
you need the coordinates of the set of 2D keypoints.
You can also add the visible status of each 2D keypoint.
>>> LabeledKeypoints2D([[10, 20], [15, 25], [20, 30]])
LabeledKeypoints2D [
Keypoint2D(10, 20),
Keypoint2D(15, 25),
Keypoint2D(20, 30)
]()
>>> LabeledKeypoints2D([[10, 20, 0], [15, 25, 1], [20, 30, 1]])
LabeledKeypoints2D [
Keypoint2D(10, 20, 0),
Keypoint2D(15, 25, 1),
Keypoint2D(20, 30, 1)
]()
It contains the basic geometry information of the 2D keypoints. And you can access the keypoints by index.
>>> keypoints2d_label[0]
Keypoint2D(10, 20)
Keypoints2D.Category¶
The category of the object inside the 3D bounding box. See Category for details.
Keypoints2D.Attributes¶
Attributes are the additional information about this object, which are stored in key-value pairs. See Attributes for details.
Keypoints2D.Instance¶
Instance is the unique ID for the object inside of the 3D bounding box, which is mostly used for tracking tasks. See Instance for details.
Keypoints2DSubcatalog¶
Before adding 2D keypoints labels to the dataset,
Keypoints2DSubcatalog
should be defined.
Besides AttributesInformation,
CategoryInformation,
TrackingInformation in
Keypoints2DSubcatalog
,
it also has keypoints
to describe a set of keypoints corresponding to certain categories.
>>> from tensorbay.label import Keypoints2DSubcatalog
>>> keypoints2d_subcatalog = Keypoints2DSubcatalog()
>>> keypoints2d_subcatalog.add_keypoints(
... 3,
... names=["head", "body", "feet"],
... skeleton=[[0, 1], [1, 2]],
... visible="BINARY",
... parent_categories=["cat"],
... description="keypoints of cats"
... )
>>> keypoints2d_subcatalog.keypoints
[KeypointsInfo(
(number): 3,
(names): [...],
(skeleton): [...],
(visible): 'BINARY',
(parent_categories): [...]
)]
We use KeypointsInfo
to describe a set of 2D keypoints.
The first parameter of add_keypoints()
is the number of the set of 2D keypoints, which is required.
The names
is a list of string representing the names for each 2D keypoint,
the length of which is consistent with the number.
The skeleton
is a two-dimensional list indicating the connection between the keypoints.
The visible
is the visible status that limits the
v
of Keypoint2D
.
It can only be “BINARY” or “TERNARY”.
See details in Keypoint2D
.
The parent_categories
is a list of categories indicating to which category the keypoints rule
applies.
Mostly, parent_categories
is not given,
which means the keypoints rule applies to all the categories of the entire dataset.
To add a LabeledKeypoints2D
label to one data:
>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.keypoints2d = []
>>> data.label.keypoints2d.append(keypoints2d_label)
Note
One data may contain multiple Keypoints2D labels,
so the Data.label.keypoints2d
must be a list.
Sentence¶
Sentence label is the transcripted sentence of a piece of audio, which is often used for autonomous speech recognition.
Each audio can be assigned with multiple sentence labels.
The structure of one sentence label is like:
{
"sentence": [
{
"text": <str>
"begin": <float>
"end": <float>
}
...
...
],
"spell": [
{
"text": <str>
"begin": <float>
"end": <float>
}
...
...
],
"phone": [
{
"text": <str>
"begin": <float>
"end": <float>
}
...
...
],
"attributes": {
<key>: <value>,
...
...
}
}
To create a LabeledSentence
label:
>>> from tensorbay.label import LabeledSentence
>>> from tensorbay.label import Word
>>> sentence_label = LabeledSentence(
... sentence=[Word("text", 1.1, 1.6)],
... spell=[Word("spell", 1.1, 1.6)],
... phone=[Word("phone", 1.1, 1.6)],
... attributes={"attribute_name": "attribute_value"}
... )
>>> sentence_label
LabeledSentence(
(sentence): [
Word(
(text): 'text',
(begin): 1.1,
(end): 1.6
)
],
(spell): [
Word(
(text): 'text',
(begin): 1.1,
(end): 1.6
)
],
(phone): [
Word(
(text): 'text',
(begin): 1.1,
(end): 1.6
)
],
(attributes): {
'attribute_name': 'attribute_value'
}
Sentence.sentence¶
The sentence
of a
LabeledSentence
is a list of
Word
,
representing the transcripted sentence of the audio.
Sentence.spell¶
The spell
of a
LabeledSentence
is a list of
Word
,
representing the spell within the sentence.
It is only for Chinese language.
Sentence.phone¶
The phone
of a
LabeledSentence
is a list of
Word
,
representing the phone of the sentence label.
Word¶
Word
is the basic component of a phonetic transcription sentence,
containing the content of the word, the start and the end time in the audio.
>>> from tensorbay.label import Word
>>> Word("text", 1.1, 1.6)
Word(
(text): 'text',
(begin): 1,
(end): 2
)
sentence
,
spell
,
and phone
of a sentence label all compose of
Word
.
Sentence.Attributes¶
The attributes of the transcripted sentence. See AttributesInformation for details.
SentenceSubcatalog¶
Before adding sentence labels to the dataset,
SetenceSubcatalog
should be defined.
Besides AttributesInformation in
SetenceSubcatalog
,
it also has is_sample
,
sample_rate
and lexicon
.
to describe the transcripted sentences of the audio.
>>> from tensorbay.label import SentenceSubcatalog
>>> sentence_subcatalog = SentenceSubcatalog(
... is_sample=True,
... sample_rate=5,
... lexicon=[["word", "spell", "phone"]]
... )
>>> sentence_subcatalog
SentenceSubcatalog(
(is_sample): True,
(sample_rate): 5,
(lexicon): [...]
)
>>> sentence_subcatalog.lexicon
[['word', 'spell', 'phone']]
The is_sample
is a boolen value indicating whether time format is sample related.
The sample_rate
is the number of samples of audio carried per second.
If is_sample
is Ture, then sample_rate
must be provided.
The lexicon
is a list consists all of text and phone.
Besides giving the parameters while initialing
SetenceSubcatalog
,
you can set them after intialization.
>>> from tensorbay.label import SentenceSubcatalog
>>> sentence_subcatalog = SentenceSubcatalog()
>>> sentence_subcatalog.is_sample = True
>>> sentence_subcatalog.sample_rate = 5
>>> sentence_subcatalog.append_lexicon(["text", "spell", "phone"])
>>> sentence_subcatalog
SentenceSubcatalog(
(is_sample): True,
(sample_rate): 5,
(lexicon): [...]
)
To add a LabeledSentence
label to one data:
>>> from tensorbay.dataset import Data
>>> data = Data("local_path")
>>> data.label.sentence = []
>>> data.label.sentence.append(sentence_label)
Note
One data may contain multiple Sentence labels,
so the Data.label.sentence
must be a list.
API Reference¶
tensorbay.client¶
tensorbay.client.cli¶
Command-line interface.
Use ‘gas’ + COMMAND in terminal to operate on datasets.
Use ‘gas config’ to configure environment.
Use ‘gas create’ to create a dataset.
Use ‘gas delete’ to delete a dataset.
Use ‘gas ls’ to list data.
Use ‘gas cp’ to upload data.
Use ‘gas rm’ to delete data.
tensorbay.client.dataset¶
Class DatasetClientBase, DatasetClient and FusionDatasetClient.
DatasetClient
is a remote concept. It contains the information
needed for determining a unique dataset on TensorBay, and provides a series of methods within
dataset scope, such as DatasetClient.get_segment()
, DatasetClient.list_segment_names()
,
DatasetClient.commit
, and so on.
In contrast to the DatasetClient
,
Dataset
is a local concept. It represents a
dataset created locally. Please refer to
Dataset
for more information.
Similar to the DatasetClient
, the
FusionDatasetClient
represents
the fusion dataset on TensorBay, and its local counterpart is
FusionDataset
.
Please refer to FusionDataset
for more information.
-
class
tensorbay.client.dataset.
DatasetClient
(name: str, dataset_id: str, gas_client: GAS, *, commit_id: Optional[str] = None)[source]¶ Bases:
tensorbay.client.dataset.DatasetClientBase
This class defines
DatasetClient
.DatasetClient
inherits fromDataClientBase
and provides more methods within a dataset scope, such asDatasetClient.get_segment()
,DatasetClient.commit
andDatasetClient.upload_segment()
. In contrast toFusionDatasetClient
, aDatasetClient
has only one sensor.-
get_or_create_segment
(name: str = '') → tensorbay.client.segment.SegmentClient[source]¶ Create a segment with the given name to the draft.
- Parameters
name – Segment name, can not be “_default”.
- Returns
Created
SegmentClient
with given name.
-
get_segment
(name: str = '') → tensorbay.client.segment.SegmentClient[source]¶ Get a segment in a certain commit according to given name.
- Parameters
name – The name of the required segment.
- Returns
~tensorbay.client.segment.SegmentClient.
- Return type
The required class
- Raises
GASSegmentError – When the required segment does not exist.
-
upload_segment
(segment: tensorbay.dataset.segment.Segment, *, jobs: int = 1, skip_uploaded_files: bool = False) → tensorbay.client.segment.SegmentClient[source]¶ Upload a
Segment
to the dataset.This function will upload all info contains in the input
Segment
, which includes: - Create a segment using the name of input Segment. - Upload all Data in the Segment to the dataset.- Parameters
segment – The
Segment
contains the information needs to be upload.jobs – The number of the max workers in multi-thread uploading method.
skip_uploaded_files – True for skipping the uploaded files.
- Returns
- The
SegmentClient
used for uploading the data in the segment.
- The
-
-
class
tensorbay.client.dataset.
DatasetClientBase
(name: str, dataset_id: str, gas_client: GAS, *, commit_id: Optional[str] = None)[source]¶ Bases:
object
This class defines the basic concept of the dataset client.
A
DatasetClientBase
contains the information needed for determining a unique dataset on TensorBay, and provides a series of method within dataset scope, such asDatasetClientBase.list_segment_names()
andDatasetClientBase.upload_catalog()
.- Parameters
name – Dataset name.
dataset_id – Dataset ID.
gas_client – The initial client to interact between local and TensorBay.
-
checkout
(commit: Optional[str] = None, draft_number: Optional[int] = None) → None[source]¶ Checkout to commit or draft.
- Parameters
commit – The commit ID.
draft_number – The draft number.
- Raises
TypeError – When both commit ID and draft number are provided or neither.
-
commit
(message: str, *, tag: Optional[str] = None) → None[source]¶ Commit the draft.
- Parameters
message – The commit message.
tag – A tag for current commit.
-
create_draft
(title: Optional[str] = None) → int[source]¶ Create the draft.
- Parameters
title – The draft title.
- Returns
The draft number of the created draft
-
property
dataset_id
¶ Return the TensorBay dataset ID.
- Returns
The TensorBay dataset ID.
-
delete_segment
(name: str) → None[source]¶ Delete a segment of the draft.
- Parameters
name – Segment name.
-
get_catalog
() → tensorbay.label.catalog.Catalog[source]¶ Get the catalog of the certain commit.
- Returns
Required
Catalog
.
-
list_draft_titles_and_numbers
(*, start: int = 0, stop: int = 9223372036854775807) → Iterator[Dict[str, str]][source]¶ List the dict containing title and number of drafts.
- Parameters
start – The index to start.
stop – The index to end.
- Yields
The dict containing title and number of drafts.
-
list_segment_names
(*, start: int = 0, stop: int = 9223372036854775807) → Iterator[str][source]¶ List all segment names in a certain commit.
- Parameters
start – The index to start.
stop – The index to end.
- Yields
Required segment names.
-
property
name
¶ Return the TensorBay dataset name.
- Returns
The TensorBay dataset name.
-
property
status
¶ Return the status of the dataset client.
- Returns
The status of the dataset client.
-
upload_catalog
(catalog: tensorbay.label.catalog.Catalog) → None[source]¶ Upload a catalog to the draft.
- Parameters
catalog –
Catalog
to upload.- Raises
TypeError – When the catalog is empty.
tensorbay.client.exceptions¶
Classes refer to TensorBay exceptions.
Error |
Description |
---|---|
GASResponseError |
Post response error |
GASDatasetError |
The requested dataset does not exist |
GASDatasetTypeError |
The type of the requested dataset is wrong |
GASDataTypeError |
Dataset has multiple data types |
GASLabelsetError |
Requested data does not exist |
GASLabelsetTypeError |
The type of the requested data is wrong |
GASSegmentError |
The requested segment does not exist |
GASPathError |
Remote path does not follow linux style |
GASFrameError |
Uploading frame has no timestamp and no frame index. |
-
exception
tensorbay.client.exceptions.
GASDataTypeError
[source]¶ Bases:
tensorbay.client.exceptions.GASException
This error is raised to indicate that the dataset has multiple data types.
-
exception
tensorbay.client.exceptions.
GASDatasetError
(dataset_name: str)[source]¶ Bases:
tensorbay.client.exceptions.GASException
This error is raised to indicate that the requested dataset does not exist.
- Parameters
dataset_name – The name of the missing dataset.
-
exception
tensorbay.client.exceptions.
GASDatasetTypeError
(dataset_name: str, is_fusion: bool)[source]¶ Bases:
tensorbay.client.exceptions.GASException
This error is raised to indicate that the type of the requested dataset is wrong.
- Parameters
dataset_name – The name of the dataset whose requested type is wrong.
is_fusion – Whether the dataset is a fusion dataset.
-
exception
tensorbay.client.exceptions.
GASException
[source]¶ Bases:
Exception
This defines the parent class to the following specified error classes.
-
exception
tensorbay.client.exceptions.
GASFrameError
[source]¶ Bases:
tensorbay.client.exceptions.GASException
This error is raised to indicate that uploading frame has no timestamp and no frame index.
-
exception
tensorbay.client.exceptions.
GASLabelsetError
(labelset_id: str)[source]¶ Bases:
tensorbay.client.exceptions.GASException
This error is raised to indicate that requested data does not exist.
- Parameters
labelset_id – The labelset ID of the missing labelset.
-
exception
tensorbay.client.exceptions.
GASLabelsetTypeError
(labelset_id: str, is_fusion: bool)[source]¶ Bases:
tensorbay.client.exceptions.GASException
This error is raised to indicate that the type of the requested labelset is wrong.
- Parameters
labelset_id – The ID of the labelset whose requested type is wrong.
is_fusion – whether the labelset is a fusion labelset.
-
exception
tensorbay.client.exceptions.
GASPathError
(remote_path: str)[source]¶ Bases:
tensorbay.client.exceptions.GASException
This error is raised to indicate that remote path does not follow linux style.
- Parameters
remote_path – The invalid remote path.
-
exception
tensorbay.client.exceptions.
GASResponseError
(response: requests.models.Response)[source]¶ Bases:
tensorbay.client.exceptions.GASException
This error is raised to indicate post response error.
- Parameters
response – The response of the request.
-
exception
tensorbay.client.exceptions.
GASSegmentError
(segment_name: str)[source]¶ Bases:
tensorbay.client.exceptions.GASException
This error is raised to indicate that the requested segment does not exist.
- Parameters
segment_name – The name of the missing segment_name.
tensorbay.client.gas¶
Class GAS.
The GAS
defines the initial client to interact between local and TensorBay.
It provides some operations on datasets level such as GAS.create_dataset()
,
GAS.list_dataset_names()
and GAS.get_dataset()
.
AccessKey is required when operating with dataset.
-
class
tensorbay.client.gas.
GAS
(access_key: str, url: str = '')[source]¶ Bases:
object
GAS
defines the initial client to interact between local and TensorBay.GAS
provides some operations on dataset level such asGAS.create_dataset()
GAS.list_dataset_names()
andGAS.get_dataset()
.- Parameters
access_key – User’s access key.
url – The host URL of the gas website.
-
create_dataset
(name: str, is_fusion: typing_extensions.Literal[False] = False, *, region: Optional[str] = 'None') → tensorbay.client.dataset.DatasetClient[source]¶ -
create_dataset
(name: str, is_fusion: typing_extensions.Literal[True], *, region: Optional[str] = 'None') → tensorbay.client.dataset.FusionDatasetClient -
create_dataset
(name: str, is_fusion: bool = False, *, region: Optional[str] = 'None') → Union[tensorbay.client.dataset.DatasetClient, tensorbay.client.dataset.FusionDatasetClient] Create a TensorBay dataset with given name.
- Parameters
name – Name of the dataset, unique for a user.
is_fusion – Whether the dataset is a fusion dataset, True for fusion dataset.
region – Region of the dataset to be stored, only support “beijing”, “hangzhou”, “shanghai”, default is “shanghai”.
- Returns
- The created
DatasetClient
instance or FusionDatasetClient
instance (is_fusion=True), and the status of dataset client is “commit”.
- The created
-
delete_dataset
(name: str) → None[source]¶ Delete a TensorBay dataset with given name.
- Parameters
name – Name of the dataset, unique for a user.
-
get_dataset
(name: str, is_fusion: typing_extensions.Literal[False] = False) → tensorbay.client.dataset.DatasetClient[source]¶ -
get_dataset
(name: str, is_fusion: typing_extensions.Literal[True]) → tensorbay.client.dataset.FusionDatasetClient -
get_dataset
(name: str, is_fusion: bool = False) → Union[tensorbay.client.dataset.DatasetClient, tensorbay.client.dataset.FusionDatasetClient] Get a TensorBay dataset with given name and commit ID.
- Parameters
name – The name of the requested dataset.
is_fusion – Whether the dataset is a fusion dataset, True for fusion dataset.
- Returns
- The requested
DatasetClient
instance or FusionDatasetClient
instance (is_fusion=True), and the status of dataset client is “commit”.
- The requested
- Raises
GASDatasetTypeError – When the requested dataset type is not the same as given.
-
list_dataset_names
(*, start: int = 0, stop: int = 9223372036854775807) → Iterator[str][source]¶ List names of all TensorBay datasets.
- Parameters
start – The index to start.
stop – The index to stop.
- Yields
Names of all datasets.
-
rename_dataset
(name: str, new_name: str) → None[source]¶ Rename a TensorBay Dataset with given name.
- Parameters
name – Name of the dataset, unique for a user.
new_name – New name of the dataset, unique for a user.
-
upload_dataset
(dataset: tensorbay.dataset.dataset.Dataset, draft_number: Optional[int] = None, *, jobs: int = '1', skip_uploaded_files: bool = 'False') → tensorbay.client.dataset.DatasetClient[source]¶ -
upload_dataset
(dataset: tensorbay.dataset.dataset.FusionDataset, draft_number: Optional[int] = None, *, jobs: int = '1', skip_uploaded_files: bool = 'False') → tensorbay.client.dataset.FusionDatasetClient -
upload_dataset
(dataset: Union[tensorbay.dataset.dataset.Dataset, tensorbay.dataset.dataset.FusionDataset], draft_number: Optional[int] = None, *, jobs: int = '1', skip_uploaded_files: bool = 'False') → Union[tensorbay.client.dataset.DatasetClient, tensorbay.client.dataset.FusionDatasetClient] Upload a local dataset to TensorBay.
This function will upload all information contains in the
Dataset
orFusionDataset
, which includes:Create a TensorBay dataset with the name and type of input local dataset.
- Upload all
Segment
or
FusionSegment
in the dataset to TensorBay.
- Upload all
- Parameters
dataset – The
Dataset
orFusionDataset
needs to be uploaded.jobs – The number of the max workers in multi-thread upload.
skip_uploaded_files – Set it to True to skip the uploaded files.
draft_number – The draft number.
- Returns
- The
DatasetClient
or FusionDatasetClient
bound with the uploaded dataset.
- The
tensorbay.client.log¶
Logging utility functions.
Dump_request_and_response
dumps http request and response.
-
class
tensorbay.client.log.
RequestLogging
(request: requests.models.PreparedRequest)[source]¶ Bases:
object
This class used to lazy load request to logging.
- Parameters
request – The request of the request.
-
class
tensorbay.client.log.
ResponseLogging
(response: requests.models.Response)[source]¶ Bases:
object
This class used to lazy load response to logging.
- Parameters
response – The response of the request.
-
tensorbay.client.log.
dump_request_and_response
(response: requests.models.Response) → str[source]¶ Dumps http request and response.
- Parameters
response – Http response and response.
- Returns
Http request and response for logging, sample:
=================================================================== ########################## HTTP Request ########################### "url": https://gas.graviti.cn/gatewayv2/content-store/putObject "method": POST "headers": { "User-Agent": "python-requests/2.23.0", "Accept-Encoding": "gzip, deflate", "Accept": "*/*", "Connection": "keep-alive", "X-Token": "c3b1808b21024eb38f066809431e5bb9", "Content-Type": "multipart/form-data; boundary=5adff1fc0524465593d6a9ad68aad7f9", "Content-Length": "330001" } "body": --5adff1fc0524465593d6a9ad68aad7f9 b'Content-Disposition: form-data; name="contentSetId"\r\n\r\n' b'e6110ff1-9e7c-4c98-aaf9-5e35522969b9' --5adff1fc0524465593d6a9ad68aad7f9 b'Content-Disposition: form-data; name="filePath"\r\n\r\n' b'4.jpg' --5adff1fc0524465593d6a9ad68aad7f9 b'Content-Disposition: form-data; name="fileData"; filename="4.jpg"\r\n\r\n' [329633 bytes of object data] --5adff1fc0524465593d6a9ad68aad7f9-- ########################## HTTP Response ########### "url": https://gas.graviti.cn/gatewayv2/content-stor "status_code": 200 "reason": OK "headers": { "Date": "Sat, 23 May 2020 13:05:09 GMT", "Content-Type": "application/json;charset=utf-8", "Content-Length": "69", "Connection": "keep-alive", "Access-Control-Allow-Origin": "*", "X-Kong-Upstream-Latency": "180", "X-Kong-Proxy-Latency": "112", "Via": "kong/2.0.4" } "content": { "success": true, "code": "DATACENTER-0", "message": "success", "data": {} } ====================================================
tensorbay.client.requests¶
Class Client and method multithread_upload.
Client
can send POST, PUT, and GET requests to the TensorBay Dataset Open API.
multithread_upload()
creates a multi-thread framework for uploading.
-
class
tensorbay.client.requests.
Client
(access_key: str, url: str = '')[source]¶ Bases:
object
This class defines
Client
.Client
defines the client that saves the user and URL information and supplies basic call methods that will be used by derived clients, such as sending GET, PUT and POST requests to TensorBay Open API.- Parameters
access_key – User’s access key.
url – The URL of the graviti gas website.
-
do
(method: str, url: str, **kwargs: Any) → requests.models.Response[source]¶ Send a request.
- Parameters
method – The method of the request.
url – The URL of the request.
**kwargs – Extra keyword arguments to send in the GET request.
- Returns
Response of the request.
-
open_api_do
(method: str, section: str, dataset_id: str = '', **kwargs: Any) → requests.models.Response[source]¶ Send a request to the TensorBay Open API.
- Parameters
method – The method of the request.
section – The section of the request.
dataset_id – Dataset ID.
**kwargs – Extra keyword arguments to send in the POST request.
- Returns
Response of the request.
-
class
tensorbay.client.requests.
Config
(max_retries: int = 3, timeout: int = 15, is_intern: bool = False)[source]¶ Bases:
object
This is a base class defining the concept of Post Config.
- Parameters
max_retries – Maximum retry times of the post request.
timeout – Timeout value of the post request in seconds.
is_intern – Whether the post request is from intern.
-
property
is_intern
¶ Get whether the post request is from intern.
- Returns
Whether the post request is from intern.
-
class
tensorbay.client.requests.
TimeoutHTTPAdapter
(*args: Any, timeout: Optional[int] = None, **kwargs: Any)[source]¶ Bases:
requests.adapters.HTTPAdapter
This class defines the http adapter for setting the timeout value.
- Parameters
*args – Extra arguments to initialize TimeoutHTTPAdapter.
timeout – Timeout value of the post request in seconds.
**kwargs – Extra keyword arguments to initialize TimeoutHTTPAdapter.
-
send
(request: requests.models.PreparedRequest, stream: Any = False, timeout: Optional[Any] = None, verify: Any = True, cert: Optional[Any] = None, proxies: Optional[Any] = None) → Any[source]¶ Send the request.
- Parameters
request – The PreparedRequest being sent.
stream – Whether to stream the request content.
timeout – Timeout value of the post request in seconds.
verify – A path string to a CA bundle to use or a boolean which controls whether to verify the server’s TLS certificate.
cert – User-provided SSL certificate.
proxies – Proxies dict applying to the request.
- Returns
Response object.
-
class
tensorbay.client.requests.
UserSession
[source]¶ Bases:
requests.sessions.Session
This class defines UserSession.
-
request
(method: str, url: str, *args: Any, **kwargs: Any) → requests.models.Response[source]¶ Make the request.
- Parameters
method – Method for the request.
url – URL for the request.
*args – Extra arguments to make the request.
**kwargs – Extra keyword arguments to make the request.
- Returns
Response of the request.
- Raises
GASResponseError – If post response error.
-
-
tensorbay.client.requests.
multithread_upload
(function: Callable[[_T], None], arguments: Iterable[_T], *, jobs: int = 1) → None[source]¶ Multi-thread upload framework.
- Parameters
function – The upload function.
arguments – The arguments of the upload function.
jobs – The number of the max workers in multi-thread uploading procession.
-
tensorbay.client.requests.
paging_range
(start: int, stop: int, limit: int) → Iterator[Tuple[int, int]][source]¶ A Generator which generates offset and limit for paging request.
Examples
>>> paging_range(0, 10, 3) <generator object paging_range at 0x11b9932e0>
>>> list(paging_range(0, 10, 3)) [(0, 3), (3, 3), (6, 3), (9, 1)]
- Parameters
start – The paging index to start.
stop – The paging index to end.
limit – The paging limit.
- Yields
The tuple (offset, limit) for paging request.
tensorbay.client.segment¶
SegmentClientBase, SegmentClient and FusionSegmentClient.
The SegmentClient
is a remote concept. It
contains the information needed for determining a unique segment in a dataset
on TensorBay, and provides a series of methods within a segment scope,
such as SegmentClient.upload_label()
, SegmentClient.upload_data()
,
SegmentClient.list_data()
and so on.
In contrast to the SegmentClient
,
Segment
is a local concept.
It represents a segment created locally. Please refer to
Segment
for more information.
Similarly to the SegmentClient
, the FusionSegmentClient
represents
the fusion segment in a fusion dataset on TensorBay, and its local counterpart
is FusionSegment
.
Please refer to FusionSegment
for more information.
-
class
tensorbay.client.segment.
FusionSegmentClient
(name: str, data_client: FusionDatasetClient)[source]¶ Bases:
tensorbay.client.segment.SegmentClientBase
This class defines
FusionSegmentClient
.FusionSegmentClient
inherits fromSegmentClientBase
and provides methods within a fusion segment scope, such asFusionSegmentClient.upload_sensor()
,FusionSegmentClient.upload_frame()
andFusionSegmentClient.list_frames()
.In contrast to
SegmentClient
,FusionSegmentClient
has multiple sensors.-
delete_sensor
(sensor_name: str) → None[source]¶ Delete a TensorBay sensor of the draft with the given sensor name.
- Parameters
sensor_name – The TensorBay sensor to delete.
-
list_frames
(*, start: int = 0, stop: int = 9223372036854775807) → Iterator[tensorbay.dataset.frame.Frame][source]¶ List required frames in the segment in a certain commit.
- Parameters
start – The index to start.
stop – The index to stop.
- Yields
Required
Frame
.
-
list_sensors
() → Iterator[Union[Radar, Lidar, FisheyeCamera, Camera]][source]¶ List required sensor object in a segment client.
- Yields
Required sensor objects.
-
upload_frame
(frame: tensorbay.dataset.frame.Frame, timestamp: Optional[float] = None) → None[source]¶ Upload frame to the draft.
- Parameters
frame – The
Frame
to upload.timestamp – The mark to sort frames, supporting timestamp and float.
- Raises
GASPathError – When remote_path does not follow linux style.
GASException – When uploading frame failed.
TypeError – When frame id conflicts。 `
-
upload_sensor
(sensor: tensorbay.sensor.sensor.Sensor) → None[source]¶ Upload sensor to the draft.
- Parameters
sensor – The sensor to upload.
-
-
class
tensorbay.client.segment.
SegmentClient
(name: str, data_client: DatasetClient)[source]¶ Bases:
tensorbay.client.segment.SegmentClientBase
This class defines
SegmentClient
.SegmentClient
inherits from SegmentClientBase and provides methods within a segment scope, such as upload_label(), upload_data(), list_data() and so on. In contrast to FusionSegmentClient,SegmentClient
has only one sensor.-
list_data
(*, start: int = 0, stop: int = 9223372036854775807) → Iterator[tensorbay.dataset.data.RemoteData][source]¶ List required Data object in a dataset segment.
- Parameters
start – The index to start.
stop – The index to stop.
- Yields
Required Data object.
-
list_data_paths
(*, start: int = 0, stop: int = 9223372036854775807) → Iterator[str][source]¶ List required data path in a segment in a certain commit.
- Parameters
start – The index to start.
stop – The index to end.
- Yields
Required data paths.
-
upload_data
(data: tensorbay.dataset.data.Data) → None[source]¶ Upload Data object to the draft.
- Parameters
data – The
Data
.
-
upload_file
(local_path: str, target_remote_path: str = '') → None[source]¶ Upload data with local path to the draft.
- Parameters
local_path – The local path of the data to upload.
target_remote_path – The path to save the data in segment client.
- Raises
GASPathError – When target_remote_path does not follow linux style.
GASException – When uploading data failed.
-
upload_label
(data: tensorbay.dataset.data.Data) → None[source]¶ Upload label with Data object to the draft.
- Parameters
data – The data object which represents the local file to upload.
-
-
class
tensorbay.client.segment.
SegmentClientBase
(name: str, dataset_client: Union[DatasetClient, FusionDatasetClient])[source]¶ Bases:
object
This class defines the basic concept of
SegmentClient
.- A
SegmentClientBase
contains the information needed for determining a unique segment in a dataset on TensorBay.
- Parameters
name – Segment name.
dataset_client – The dataset client.
-
delete_data
(remote_paths: Union[str, Iterable[str]]) → None[source]¶ Delete data of a segment in a certain commit with the given remote paths.
- Parameters
remote_paths – The remote paths of data in a segment.
-
property
name
¶ Return the segment name.
- Returns
The segment name.
-
property
status
¶ Return the status of the dataset client.
- Returns
The status of the dataset client.
- A
tensorbay.dataset¶
tensorbay.dataset.data¶
Data.
Data
is the most basic data unit of a Dataset
.
It contains path information of a data sample and its corresponding labels.
-
class
tensorbay.dataset.data.
Data
(local_path: str, *, target_remote_path: Optional[str] = None, timestamp: Optional[float] = None)[source]¶ Bases:
tensorbay.dataset.data.DataBase
Data is a combination of a specific local file and its label.
It contains the file local path, label information of the file and the file metadata, such as timestamp.
A Data instance contains one or several types of labels.
- Parameters
local_path – The file local path.
target_remote_path – The file remote path after uploading to tensorbay.
timestamp – The timestamp for the file.
-
path
¶ The file local path.
-
timestamp
¶ The timestamp for the file.
-
labels
¶ The
Labels
that contains all the label information of the file.
-
dumps
() → Dict[str, Any][source]¶ Dumps the local data into a dict.
- Returns
Dumped data dict, which looks like:
{ "localPath": <str>, "timestamp": <float>, "label": { "CLASSIFICATION": {...}, "BOX2D": {...}, "BOX3D": {...}, "POLYGON2D": {...}, "POLYLINE2D": {...}, "KEYPOINTS2D": {...}, "SENTENCE": {...} } }
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads
Data
from a dict containing local data information.- Parameters
contents –
A dict containing the information of the data, which looks like:
{ "localPath": <str>, "timestamp": <float>, "label": { "CLASSIFICATION": {...}, "BOX2D": {...}, "BOX3D": {...}, "POLYGON2D": {...}, "POLYLINE2D": {...}, "KEYPOINTS2D": {...}, "SENTENCE": {...} } }
- Returns
A
Data
instance containing information from the given dict.
-
open
() → _io.BufferedReader[source]¶ Return the binary file pointer of this file.
The local file pointer will be obtained by build-in
open()
.- Returns
The local file pointer for this data.
-
property
target_remote_path
¶ Return the target remote path of the data.
Target remote path will be used when this data is uploaded to tensorbay, and the target remote path will be the uploaded file’s remote path.
- Returns
The target remote path of the data.
-
class
tensorbay.dataset.data.
DataBase
(path: str, *, timestamp: Optional[float] = None)[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
DataBase is a base class for the file and label combination.
- Parameters
path – The file path.
timestamp – The timestamp for the file.
-
path
¶ The file path.
-
timestamp
¶ The timestamp for the file.
-
labels
¶ The
Labels
that contains all the label information of the file.
-
static
loads
(contents: Dict[str, Any]) → _Type[source]¶ Loads
Data
orRemoteData
from a dict containing data information.- Parameters
contents –
A dict containing the information of the data, which looks like:
{ "localPath" or "remotePath": <str>, "timestamp": <float>, "label": { "CLASSIFICATION": {...}, "BOX2D": {...}, "BOX3D": {...}, "POLYGON2D": {...}, "POLYLINE2D": {...}, "KEYPOINTS2D": {...}, "SENTENCE": {...} } }
- Returns
A
Data
orRemoteData
instance containing the given dict information.
-
class
tensorbay.dataset.data.
RemoteData
(remote_path: str, *, timestamp: Optional[float] = None, url_getter: Optional[Callable[[str], str]] = None)[source]¶ Bases:
tensorbay.dataset.data.DataBase
RemoteData is a combination of a specific tensorbay dataset file and its label.
It contains the file remote path, label information of the file and the file metadata, such as timestamp.
A RemoteData instance contains one or several types of labels.
- Parameters
remote_path – The file remote path.
timestamp – The timestamp for the file.
url_getter – The url getter of the remote file.
-
path
¶ The file remote path.
-
timestamp
¶ The timestamp for the file.
-
labels
¶ The
Labels
that contains all the label information of the file.
-
dumps
() → Dict[str, Any][source]¶ Dumps the remote data into a dict.
- Returns
Dumped data dict, which looks like:
{ "remotePath": <str>, "timestamp": <float>, "label": { "CLASSIFICATION": {...}, "BOX2D": {...}, "BOX3D": {...}, "POLYGON2D": {...}, "POLYLINE2D": {...}, "KEYPOINTS2D": {...}, "SENTENCE": {...} } }
-
get_url
() → str[source]¶ Return the url of the data hosted by tensorbay.
- Returns
The url of the data.
- Raises
ValueError – When the url_getter is missing.
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads
RemoteData
from a dict containing remote data information.- Parameters
contents –
A dict containing the information of the data, which looks like:
{ "remotePath": <str>, "timestamp": <float>, "label": { "CLASSIFICATION": {...}, "BOX2D": {...}, "BOX3D": {...}, "POLYGON2D": {...}, "POLYLINE2D": {...}, "KEYPOINTS2D": {...}, "SENTENCE": {...} } }
- Returns
A
Data
instance containing information from the given dict.
tensorbay.dataset.dataset¶
DatasetBase, Dataset and FusionDataset.
DatasetBase
defines the basic concept of a dataset,
which is the top-level structure to handle your data files, labels and other additional information.
It represents a whole dataset contains several segments
and is the base class of Dataset
and FusionDataset
.
Dataset
is made up of data collected from only one sensor
or data without sensor information.
It consists of a list of Segment
.
FusionDataset
is made up of data collected from multiple sensors.
It consists of a list of FusionSegment
.
-
class
tensorbay.dataset.dataset.
Dataset
(name: str, is_continuous: bool = False)[source]¶ Bases:
tensorbay.dataset.dataset.DatasetBase
[tensorbay.dataset.segment.Segment
]This class defines the concept of dataset.
Dataset is made up of data collected from only one sensor or data without sensor information. It consists of a list of
Segment
.-
create_segment
(segment_name: str = '') → tensorbay.dataset.segment.Segment[source]¶ Create a segment with the given name.
- Parameters
segment_name – The name of the segment to create, which default value is an empty string.
- Returns
The created
Segment
.
-
-
class
tensorbay.dataset.dataset.
DatasetBase
(name: str, is_continuous: bool = False)[source]¶ Bases:
tensorbay.utility.name.NameMixin
,Sequence
[tensorbay.dataset.dataset._T
]This class defines the concept of a basic dataset.
DatasetBase represents a whole dataset contains several segments and is the base class of
Dataset
andFusionDataset
.A dataset with labels should contain a
Catalog
indicating all the possible values of the labels.- Parameters
name – The name of the dataset.
is_continuous – Whether the data inside the dataset is time-continuous.
-
add_segment
(segment: _T) → None[source]¶ Add a segment to the dataset.
- Parameters
segment – The segment to be added.
-
get_segment_by_name
(name: str) → _T[source]¶ Return the segment corresponding to the given name.
- Parameters
name – The name of the request segment.
- Returns
The segment which matches the input name.
-
property
is_continuous
¶ Return whether the data in dataset is time-continuous or not.
- Returns
True if the data is time-continuous, otherwise False.
tensorbay.dataset.segment¶
Segment and FusionSegment.
Segment is a concept in Dataset
.
It is the structure that composes Dataset
,
and consists of a series of Data
without sensor information.
Fusion segment is a concept in FusionDataset
.
It is the structure that composes FusionDataset
,
and consists of a list of Frame
along with multiple Sensor
.
-
class
tensorbay.dataset.segment.
Segment
(name: str = '', client: Optional[DatasetClient] = None)[source]¶ Bases:
tensorbay.utility.name.NameMixin
,tensorbay.utility.user.UserMutableSequence
[DataBase._Type
]This class defines the concept of segment.
Segment is a concept in
Dataset
. It is the structure that composesDataset
, and consists of a series ofData
without sensor information.If the segment is inside of a time-continuous
Dataset
, the time continuity of the data should be indicated by :meth`~graviti.dataset.data.Data.remote_path`.Since
Segment
extendsUserMutableSequence
, its basic operations are the same as a list’s.To initialize a Segment and add a
Data
to it:segment = Segment(segment_name) segment.append(Data())
- Parameters
name – The name of the segment, whose default value is an empty string.
client – The DatasetClient if you want to read the segment from tensorbay.
-
sort
(*, key: Callable[[Union[Data, RemoteData]], Any] = <function Segment.<lambda>>, reverse: bool = False) → None[source]¶ Sort the list in ascending order and return None.
The sort is in-place (i.e. the list itself is modified) and stable (i.e. the order of two equal elements is maintained).
- Parameters
key – If a key function is given, apply it once to each item of the segment, and sort them according to their function values in ascending or descending order. By default, the data within the segment is sorted by fileuri.
reverse – The reverse flag can be set as True to sort in descending order.
tensorbay.geometry¶
tensorbay.geometry.box¶
Box2D, Box3D.
Box2D
contains the information of a 2D bounding box, such as the coordinates,
width and height.
It provides Box2D.iou()
to calculate the intersection over union of two 2D boxes.
Box3D
contains the information of a 3D bounding box such as the transform,
translation, rotation and size.
It provides Box3D.iou()
to calculate the intersection over union of two 3D boxes.
-
class
tensorbay.geometry.box.
Box2D
(xmin: float, ymin: float, xmax: float, ymax: float)[source]¶ Bases:
tensorbay.utility.user.UserSequence
[float
]This class defines the concept of Box2D.
Box2D
contains the information of a 2D bounding box, such as the coordinates, width and height. It providesBox2D.iou()
to calculate the intersection over union of two 2D boxes.- Parameters
xmin – The x coordinate of the top-left vertex of the 2D box.
ymin – The y coordinate of the top-left vertex of the 2D box.
xmax – The x coordinate of the bottom-right vertex of the 2D box.
ymax – The y coordinate of the bottom-right vertex of the 2D box.
-
property
br
¶ Return the bottom right point.
- Returns
The bottom right point.
-
dumps
() → Dict[str, float][source]¶ Dumps a 2D box into a dict.
- Returns
A dict containing vertex coordinates of the box.
-
classmethod
from_xywh
(x: float, y: float, width: float, height: float) → _B2[source]¶ Create a
Box2D
instance from the top-left vertex and the width and the height.- Parameters
x – X coordinate of the top left vertex of the box.
y – Y coordinate of the top left vertex of the box.
width – Length of the box along the x axis.
height – Length of the box along the y axis.
- Returns
The created
Box2D
instance.
-
property
height
¶ Return the height of the 2D box.
- Returns
The height of the 2D box.
-
static
iou
(box1: tensorbay.geometry.box.Box2D, box2: tensorbay.geometry.box.Box2D) → float[source]¶ Calculate the intersection over union of two 2D boxes.
- Parameters
box1 – A 2D box.
box2 – A 2D box.
- Returns
The intersection over union between the two input boxes.
-
classmethod
loads
(contents: Dict[str, float]) → _B2[source]¶ Load a
Box2D
from a dict containing coordinates of the 2D box.- Parameters
contents –
A dict containing coordinates of a 2D box:
{ "xmin": ... "ymin": ... "xmax": ... "ymax": ... }
- Returns
The loaded
Box2D
object.
-
property
tl
¶ Return the top left point.
- Returns
The top left point.
-
property
width
¶ Return the width of the 2D box.
- Returns
The width of the 2D box.
-
property
xmax
¶ Return the maximum x coordinate.
- Returns
Maximum x coordinate.
-
property
xmin
¶ Return the minimum x coordinate.
- Returns
Minimum x coordinate.
-
property
ymax
¶ Return the maximum y coordinate.
- Returns
Maximum y coordinate.
-
property
ymin
¶ Return the minimum y coordinate.
- Returns
Minimum y coordinate.
-
class
tensorbay.geometry.box.
Box3D
(transform: Union[None, tensorbay.geometry.transform.Transform3D, Sequence[Sequence[float]], numpy.ndarray] = None, *, translation: Iterable[float] = (0, 0, 0), rotation: Union[Iterable[float], quaternion.quaternion] = (1, 0, 0, 0), size: Iterable[float] = (0, 0, 0))[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
This class defines the concept of Box3D.
Box3D
contains the information of a 3D bounding box such as the transform, translation, rotation and size. It providesBox3D.iou()
to calculate the intersection over union of two 3D boxes.- Parameters
transform – A
Transform3D
object or a 4x4 or 3x4 transform matrix.translation – Translation in a sequence of [x, y, z].
rotation – Rotation in a sequence of [w, x, y, z] or a 3x3 rotation matrix or a numpy quaternion object.
size – Size in a sequence of [x, y, z].
-
dumps
() → Dict[str, Dict[str, float]][source]¶ Dumps the 3D box into a dict.
- Returns
A dict containing translation, rotation and size information.
-
classmethod
iou
(box1: tensorbay.geometry.box.Box3D, box2: tensorbay.geometry.box.Box3D, angle_threshold: float = 5) → float[source]¶ Calculate the intersection over union between two 3D boxes.
- Parameters
box1 – A 3D box.
box2 – A 3D box.
angle_threshold – The threshold of the relative angles between two input 3d boxes in degree.
- Returns
The intersection over union of the two 3D boxes.
-
classmethod
loads
(contents: Dict[str, Dict[str, float]]) → _B3[source]¶ Load a
Box3D
from a dict containing the coordinates of the 3D box.- Parameters
contents –
A dict containing the coordinates of a 3D box:
{ "size": { "x": ... "y": ... "z": ... }, "translation": { "x": ... "y": ... "z": ... }, "rotation": { "w": ... "x": ... "y": ... "z": ... } }
- Returns
The loaded
Box3D
object.
-
property
rotation
¶ Return the rotation of the 3D box.
- Returns
The rotation of the 3D box.
-
property
size
¶ Return the size of the 3D box.
- Returns
The size of the 3D box.
-
property
transform
¶ Return the transform of the 3D box.
- Returns
The transform of the 3D box.
-
property
translation
¶ Return the translation of the 3D box.
- Returns
The translation of the 3D box.
tensorbay.geometry.keypoint¶
Keypoints2D, Keypoint2D.
Keypoint2D
contains the information of 2D keypoint,
such as the coordinates and visible status(optional).
Keypoints2D
contains a list of 2D keypoint and is based on
PointList2D
.
-
class
tensorbay.geometry.keypoint.
Keypoint2D
(*args: float, **kwargs: float)[source]¶ Bases:
tensorbay.utility.user.UserSequence
[float
]This class defines the concept of Keypoint2D.
Keypoint2D
contains the information of 2D keypoint, such as the coordinates and visible status(optional).- Parameters
x – The x coordinate of the 2D keypoint.
y – The y coordinate of the 2D keypoint.
v –
The visible status(optional) of the 2D keypoint.
keypoint2d = Keypoint2D(x=1.0, y=2.0) keypoint2d = Keypoint2D(x=1.0, y=2.0, v=0) keypoint2d = Keypoint2D(x=1.0, y=2.0, v=1) keypoint2d = Keypoint2D(x=1.0, y=2.0, v=2)
Visible status can be “BINARY” or “TERNARY”:
Visual Status
v = 0
v = 1
v = 2
BINARY
visible
invisible
TERNARY
visible
occluded
invisible
-
dumps
() → Dict[str, float][source]¶ Dumps the
Keypoint2D
into a dict.- Returns
A dict containing coordinates and visible status(optional) of the 2D keypoint.
-
classmethod
loads
(contents: Dict[str, float]) → _T[source]¶ Load a
Keypoint2D
from a dict containing coordinates of a 2D keypoint.- Parameters
contents –
A dict containing coordinates and visible status(optional) of a 2D keypoint:
{ "x": ... "y": ... "v": ... }
- Returns
The loaded
Keypoint2D
object.
-
property
v
¶ Return the visible status of the 2D keypoint.
- Returns
Visible status of the 2D keypoint.
-
class
tensorbay.geometry.keypoint.
Keypoints2D
(points: Optional[Iterable[Iterable[float]]] = None)[source]¶ Bases:
tensorbay.geometry.polygon.PointList2D
[tensorbay.geometry.keypoint.Keypoint2D
]This class defines the concept of Keypoints2D.
Keypoints2D
contains a list of 2D keypoint and is based onPointList2D
.-
classmethod
loads
(contents: List[Dict[str, float]]) → _P[source]¶ Load a
Keypoints2D
from a list of dict.- Parameters
contents –
A list of dictionaries containing 2D keypoint:
[ { "x": ... "y": ... "v": ... --- optional }, ... ]
- Returns
The loaded
Keypoints2D
object.
-
classmethod
tensorbay.geometry.polygon¶
PointList2D, Polygon2D.
PointList2D
contains a list of 2D points.
Polygon
contains the coordinates of the vertexes of the polygon
and provides Polygon2D.area()
to calculate the area of the polygon.
-
class
tensorbay.geometry.polygon.
PointList2D
(points: Optional[Iterable[Iterable[float]]] = None)[source]¶ Bases:
tensorbay.utility.user.UserMutableSequence
[tensorbay.geometry.polygon._T
]This class defines the concept of PointList2D.
PointList2D
contains a list of 2D points.- Parameters
points – A list of 2D points.
-
bounds
() → tensorbay.geometry.box.Box2D[source]¶ Calculate the bounds of point list.
- Returns
The bounds of point list.
-
dumps
() → List[Dict[str, float]][source]¶ Dumps a
PointList2D
into a point list.- Returns
A list of dictionaries containing the coordinates of the vertexes of the polygon within the point list.
-
classmethod
loads
(contents: List[Dict[str, float]]) → _P[source]¶ Load a
PointList2D
from a list of dictionaries.- Parameters
contents –
A list of dictionaries containing the coordinates of the vertexes of the polygon:
[ { "x": ... "y": ... }, ... ]
- Returns
The loaded
PointList2D
object.
-
class
tensorbay.geometry.polygon.
Polygon2D
(points: Optional[Iterable[Iterable[float]]] = None)[source]¶ Bases:
tensorbay.geometry.polygon.PointList2D
[tensorbay.geometry.vector.Vector2D
]This class defines the concept of Polygon2D.
Polygon
contains the coordinates of the vertexes of the polygon and providesPolygon2D.area()
to calculate the area of the polygon.
tensorbay.geometry.polyline¶
Polyline2D.
Polyline2D
contains the coordinates of the vertexes of the polyline
and provides a series of methods to operate on polyline, such as
Polyline2D.uniform_frechet_distance()
and Polyline2D.similarity()
.
-
class
tensorbay.geometry.polyline.
Polyline2D
(points: Optional[Iterable[Iterable[float]]] = None)[source]¶ Bases:
tensorbay.geometry.polygon.PointList2D
[tensorbay.geometry.vector.Vector2D
]This class defines the concept of Polyline2D.
Polyline2D
contains the coordinates of the vertexes of the polyline and provides a series of methods to operate on polyline, such asPolyline2D.uniform_frechet_distance()
andPolyline2D.similarity()
.-
classmethod
loads
(contents: List[Dict[str, float]]) → _P[source]¶ Load a
Polyline2D
from a list of dict.- Parameters
contents –
A list of dict containing the coordinates of the vertexes of the polyline:
[ { "x": ... "y": ... }, ... ]
- Returns
The loaded
Polyline2D
object.
-
static
similarity
(polyline1: Sequence[Sequence[float]], polyline2: Sequence[Sequence[float]]) → float[source]¶ Calculate the similarity between two polylines, range from 0 to 1.
- Parameters
polyline1 – The first polyline consists of multiple points.
polyline2 – The second polyline consisting of multiple points.
- Returns
The similarity between the two polylines. The larger the value, the higher the similarity.
-
static
uniform_frechet_distance
(polyline1: Sequence[Sequence[float]], polyline2: Sequence[Sequence[float]]) → float[source]¶ Compute the maximum distance between two curves if walk on a constant speed on a curve.
- Parameters
polyline1 – The first polyline consists of multiple points.
polyline2 – The second polyline consists of multiple points.
- Returns
The computed distance between the two polylines.
-
classmethod
tensorbay.geometry.transform¶
Transform3D.
Transform3D
contains the rotation and translation of a 3D transform.
Transform3D.translation
is stored as Vector3D
,
and Transform3D.rotation
is stored as numpy quaternion.
-
class
tensorbay.geometry.transform.
Transform3D
(transform: Union[None, tensorbay.geometry.transform.Transform3D, Sequence[Sequence[float]], numpy.ndarray] = None, *, translation: Iterable[float] = (0, 0, 0), rotation: Union[Iterable[float], quaternion.quaternion] = (1, 0, 0, 0))[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
This class defines the concept of Transform3D.
Transform3D
contains rotation and translation of the 3D transform.- Parameters
transform – A
Transform3D
or a 4x4 or 3x4 transform matrix.translation – Translation in a sequence of [x, y, z].
rotation – Rotation in a sequence of [w, x, y, z] or numpy quaternion.
- Raises
ValueError – If the shape of the input matrix is not correct.
-
as_matrix
() → numpy.ndarray[source]¶ Return the transform as a 4x4 transform matrix.
- Returns
A 4x4 numpy array represents the transform matrix.
-
dumps
() → Dict[str, Dict[str, float]][source]¶ Dumps the
Transform3D
into a dict.- Returns
- A dict containing rotation and translation information
of the
Transform3D
.
-
inverse
() → _T[source]¶ Return the inverse of the transform.
- Returns
A
Transform3D
object representing the inverse of thisTransform3D
.
-
classmethod
loads
(contents: Dict[str, Dict[str, float]]) → _T[source]¶ Load a
Transform3D
from a dict containing rotation and translation.- Parameters
contents –
A dict containing rotation and translation of a 3D transform:
{ "translation": { "x": ... "y": ... "z": ... }, "rotation": { "w": ... "x": ... "y": ... "z": ... } }
- Returns
The loaded
Transform3D
object.
-
property
rotation
¶ Return the rotation of the 3D transform.
- Returns
Rotation in numpy quaternion.
-
set_rotation
(rotation: Union[Iterable[float], quaternion.quaternion]) → None[source]¶ Set the rotation of the transform.
- Parameters
rotation – Rotation in a sequence of [w, x, y, z] or numpy quaternion.
tensorbay.geometry.vector¶
Vector, Vector2D, Vector3D.
Vector
is the base class of Vector2D
and Vector3D
. It contains the
coordinates of a 2D vector or a 3D vector.
Vector2D
contains the coordinates of a 2D vector, extending Vector
.
Vector3D
contains the coordinates of a 3D vector, extending Vector
.
-
class
tensorbay.geometry.vector.
Vector
(x: float, y: float, z: Optional[float] = None)[source]¶ Bases:
tensorbay.utility.user.UserSequence
[float
]This class defines the basic concept of Vector.
Vector
contains the coordinates of a 2D vector or a 3D vector.- Parameters
x – The x coordinate of the vector.
y – The y coordinate of the vector.
z –
The z coordinate of the vector.
vector2d = Vector(x=1, y=2) vector3d = Vector(x=1, y=2, z=3)
-
static
loads
(contents: Dict[str, float]) → Union[tensorbay.geometry.vector.Vector2D, tensorbay.geometry.vector.Vector3D][source]¶ Loads a
Vector
from a dict containing coordinates of the vector.
-
class
tensorbay.geometry.vector.
Vector2D
(*args: float, **kwargs: float)[source]¶ Bases:
tensorbay.utility.user.UserSequence
[float
]This class defines the concept of Vector2D.
Vector2D
contains the coordinates of a 2D vector.- Parameters
x – The x coordinate of the 2D vector.
y – The y coordinate of the 2D vector.
-
dumps
() → Dict[str, float][source]¶ Dumps the vector into a dict.
- Returns
A dict containing the vector coordinate.
-
classmethod
loads
(contents: Dict[str, float]) → _V2[source]¶ Load a
Vector2D
object from a dict containing coordinates of a 2D vector.- Parameters
contents –
A dict containing coordinates of a 2D vector:
{ "x": ... "y": ... }
- Returns
The loaded
Vector2D
object.
-
property
x
¶ Return the x coordinate of the vector.
- Returns
X coordinate in float type.
-
property
y
¶ Return the y coordinate of the vector.
- Returns
Y coordinate in float type.
-
class
tensorbay.geometry.vector.
Vector3D
(*args: float, **kwargs: float)[source]¶ Bases:
tensorbay.utility.user.UserSequence
[float
]This class defines the concept of Vector3D.
Vector3D
contains the coordinates of a 3D Vector.- Parameters
x – The x coordinate of the 3D vector.
y – The y coordinate of the 3D vector.
z – The z coordinate of the 3D vector.
-
dumps
() → Dict[str, float][source]¶ Dumps the vector into a dict.
- Returns
A dict containing the vector coordinates.
-
classmethod
loads
(contents: Dict[str, float]) → _V3[source]¶ Load a
Vector3D
object from a dict containing coordinates of a 3D vector.- Parameters
contents –
A dict contains coordinates of a 3D vector:
{ "x": ... "y": ... "z": ... }
- Returns
The loaded
Vector3D
object.
-
property
x
¶ Return the x coordinate of the vector.
- Returns
X coordinate in float type.
-
property
y
¶ Return the y coordinate of the vector.
- Returns
Y coordinate in float type.
-
property
z
¶ Return the z coordinate of the vector.
- Returns
Z coordinate in float type.
tensorbay.label¶
tensorbay.label.attributes¶
Items and AttributeInfo.
AttributeInfo
represents the information of an attribute.
It refers to the Json schema method to describe an attribute.
Items
is the base class of AttributeInfo
, representing the items of an attribute.
-
class
tensorbay.label.attributes.
AttributeInfo
(name: str, *, type_: Union[str, None, Type[Optional[Union[list, bool, int, float, str]]], Iterable[Union[str, None, Type[Optional[Union[list, bool, int, float, str]]]]]] = '', enum: Optional[Iterable[Optional[Union[str, float, bool]]]] = None, minimum: Optional[float] = None, maximum: Optional[float] = None, items: Optional[tensorbay.label.attributes.Items] = None, parent_categories: Union[None, str, Iterable[str]] = None, description: Optional[str] = None)[source]¶ Bases:
tensorbay.utility.name.NameMixin
,tensorbay.label.attributes.Items
This class represents the information of an attribute.
It refers to the Json schema method to describe an attribute.
- Parameters
name – The name of the attribute.
type –
The type of the attribute value, could be a single type or multi-types. The type must be within the followings:
array
boolean
integer
number
string
null
instance
enum – All the possible values of an enumeration attribute.
minimum – The minimum value of number type attribute.
maximum – The maximum value of number type attribute.
items – The items inside array type attributes.
parent_categories – The parent categories of the attribute.
description – The description of the attribute.
-
type
¶ The type of the attribute value, could be a single type or multi-types.
-
enum
¶ All the possible values of an enumeration attribute.
-
minimum
¶ The minimum value of number type attribute.
-
maximum
¶ The maximum value of number type attribute.
-
items
¶ The items inside array type attributes.
-
parent_categories
¶ The parent categories of the attribute.
-
description
¶ The description of the attribute.
-
dumps
() → Dict[str, Any][source]¶ Dumps the information of this attribute into a dict.
- Returns
A dict containing all the information of this attribute.
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Load an AttributeInfo from a dict containing the attribute information.
- Parameters
contents –
A dict containing the information of the attribute, whose format should be like:
{ "name": "type": "enum": [...] "minimum": "maximum": "items": { "enum": [...], "type": "minimum": "maximum": }, "description": "parentCategories": [...] }
- Returns
The loaded
AttributeInfo
object.
-
class
tensorbay.label.attributes.
Items
(*, type_: Union[str, None, Type[Optional[Union[list, bool, int, float, str]]], Iterable[Union[str, None, Type[Optional[Union[list, bool, int, float, str]]]]]] = '', enum: Optional[Iterable[Optional[Union[str, float, bool]]]] = None, minimum: Optional[float] = None, maximum: Optional[float] = None, items: Optional[tensorbay.label.attributes.Items] = None)[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
The base class of
AttributeInfo
, representing the items of an attribute.When the value type of an attribute is array, the
AttributeInfo
would contain an ‘items’ field.- Parameters
type –
The type of the attribute value, could be a single type or multi-types. The type must be within the followings:
array
boolean
integer
number
string
null
instance
enum – All the possible values of an enumeration attribute.
minimum – The minimum value of number type attribute.
maximum – The maximum value of number type attribute.
items – The items inside array type attributes.
-
type
¶ The type of the attribute value, could be a single type or multi-types.
-
enum
¶ All the possible values of an enumeration attribute.
-
minimum
¶ The minimum value of number type attribute.
-
maximum
¶ The maximum value of number type attribute.
-
items
¶ The items inside array type attributes.
-
dumps
() → Dict[str, Any][source]¶ Dumps the information of the items into a dict.
- Returns
A dict containing all the information of the items.
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Load an Items from a dict containing the items information.
- Parameters
contents –
A dict containing the information of the items, whose format should be like:
{ "type": "enum": [...] "minimum": "maximum": "items": { "enum": [...], "type": "minimum": "maximum": } }
- Returns
The loaded
Items
object.
tensorbay.label.basic¶
LabelType, SubcatalogBase, Label.
LabelType
is an enumeration type
which includes all the supported label types within Label
.
Subcatalogbase
is the base class for different types of subcatalogs,
which defines the basic concept of Subcatalog.
A Data
instance contains one or several types of labels,
all of which are stored in label
.
A subcatalog class extends SubcatalogBase
and needed SubcatalogMixin
classes.
Different label types correspond to different label classes classes.
label classes |
explaination |
---|---|
classification type of label |
|
2D bounding box type of label |
|
3D bounding box type of label |
|
2D polygon type of label |
|
2D polyline type of label |
|
2D keypoints type of label |
|
transcripted sentence type of label |
-
class
tensorbay.label.basic.
Label
[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
This class defines
label
.It contains growing types of labels referring to different tasks.
-
dumps
() → Dict[str, Any][source]¶ Dumps all labels into a dict.
- Returns
Dumped labels dict, which looks like:
{ "CLASSIFICATION": {...}, "BOX2D": {...}, "BOX3D": {...}, "POLYGON2D": {...}, "POLYLINE2D": {...}, "KEYPOINTS2D": {...}, "SENTENCE": {...}, }
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads data from a dict containing the labels information.
- Parameters
contents –
A dict containing the labels information, which looks like:
{ "CLASSIFICATION": {...}, "BOX2D": {...}, "BOX3D": {...}, "POLYGON2D": {...}, "POLYLINE2D": {...}, "KEYPOINTS2D": {...}, "SENTENCE": {...}, }
- Returns
A
Label
instance containing labels information from the given dict.
-
-
class
tensorbay.label.basic.
LabelType
(value)[source]¶ Bases:
tensorbay.utility.type.TypeEnum
This class defines all the supported types within
Label
.-
property
subcatalog_type
¶ Return the corresponding subcatalog class.
Each label type has a corresponding Subcatalog class.
- Returns
The corresponding subcatalog type.
-
property
-
class
tensorbay.label.basic.
SubcatalogBase
(*args, **kwds)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This is the base class for different types of subcatalogs.
It defines the basic concept of Subcatalog, which is the collection of the labels information. Subcatalog contains the features, fields and specific definitions of the labels.
The Subcatalog format varies by label type.
-
description
¶ The description of the entire subcatalog.
-
dumps
() → Dict[str, Any][source]¶ Dumps all the information of the subcatalog into a dict.
- Returns
A dict containing all the information of the subcatalog.
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads a subcatalog from a dict containing the information of the subcatalog.
- Parameters
contents – A dict containing the information of the subcatalog.
- Returns
The loaded
SubcatalogBase
object.
-
tensorbay.label.catalog¶
Catalog.
Catalog
is used to describe the types of labels
contained in a DatasetBase
and
all the optional values of the label contents.
A Catalog
contains one or several SubcatalogBase
,
corresponding to different types of labels.
subcatalog classes |
explaination |
---|---|
subcatalog for classification type of label |
|
subcatalog for 2D bounding box type of label |
|
subcatalog for 3D bounding box type of label |
|
subcatalog for 2D polygon type of label |
|
subcatalog for 2D polyline type of label |
|
subcatalog for 2D keypoints type of label |
|
subcatalog for transcripted sentence type of label |
-
class
tensorbay.label.catalog.
Catalog
[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the concept of catalog.
Catalog
is used to describe the types of labels contained in aDatasetBase
and all the optional values of the label contents.A
Catalog
contains one or severalSubcatalogBase
, corresponding to different types of labels. Each of theSubcatalogBase
contains the features, fields and the specific definitions of the labels.
tensorbay.label.label_box¶
LabeledBox2D ,LabeledBox3D, Box2DSubcatalog, Box3DSubcatalog.
Box2DSubcatalog
defines the subcatalog for 2D box type of labels.
LabeledBox2D
is the 2D bounding box type of label,
which is often used for CV tasks such as object detection.
Box3DSubcatalog
defines the subcatalog for 3D box type of labels.
LabeledBox3D
is the 3D bounding box type of label,
which is often used for object detection in 3D point cloud.
-
class
tensorbay.label.label_box.
Box2DSubcatalog
(is_tracking: bool = False)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the subcatalog for 2D box type of labels.
- Parameters
is_tracking – A boolean value indicates whether the corresponding subcatalog contains tracking information.
-
description
¶ The description of the entire 2D box subcatalog.
-
categories
¶ All the possible categories in the corresponding dataset stored in a
NameOrderedDict
with the category names as keys and theCategoryInfo
as values.
-
category_delimiter
¶ The delimiter in category values indicating parent-child relationship.
- Type
str
-
attributes
¶ All the possible attributes in the corresponding dataset stored in a
NameOrderedDict
with the attribute names as keys and theAttributeInfo
as values.
-
is_tracking
¶ Whether the Subcatalog contains tracking information.
-
class
tensorbay.label.label_box.
Box3DSubcatalog
(is_tracking: bool = False)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the subcatalog for 3D box type of labels.
- Parameters
is_tracking – A boolean value indicates whether the corresponding subcatalog contains tracking information.
-
description
¶ The description of the entire 3D box subcatalog.
-
categories
¶ All the possible categories in the corresponding dataset stored in a
NameOrderedDict
with the category names as keys and theCategoryInfo
as values.
-
category_delimiter
¶ The delimiter in category values indicating parent-child relationship.
- Type
str
-
attributes
¶ All the possible attributes in the corresponding dataset stored in a
NameOrderedDict
with the attribute names as keys and theAttributeInfo
as values.
-
is_tracking
¶ Whether the Subcatalog contains tracking information.
-
class
tensorbay.label.label_box.
LabeledBox2D
(xmin: float, ymin: float, xmax: float, ymax: float, *, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)[source]¶ Bases:
tensorbay.utility.user.UserSequence
[float
]This class defines the concept of 2D bounding box label.
LabeledBox2D
is the 2D bounding box type of label, which is often used for CV tasks such as object detection.- Parameters
xmin – The x coordinate of the top-left vertex of the labeled 2D box.
ymin – The y coordinate of the top-left vertex of the labeled 2D box.
xmax – The x coordinate of the bottom-right vertex of the labeled 2D box.
ymax – The y coordinate of the bottom-right vertex of the labeled 2D box.
category – The category of the label.
attributes – The attributs of the label.
instance – The instance id of the label.
-
category
¶ The category of the label.
- Type
str
-
attributes
¶ The attributes of the label.
- Type
Dict[str, Any]
-
instance
¶ The instance id of the label.
- Type
str
-
dumps
() → Dict[str, Any][source]¶ Dumps the current 2D bounding box label into a dict.
- Returns
A dict containing all the information of the 2D box label, whose format is like:
{ "box2d": { "xmin": <float> "ymin": <float> "xmax": <float> "ymax": <float> }, "category": <str> "attributes": { <key>: <value> ... ... }, "instance": <str> }
-
classmethod
from_xywh
(x: float, y: float, width: float, height: float, *, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None) → _T[source]¶ Create a
LabeledBox2D
instance from the top-left vertex, the width and height.- Parameters
x – X coordinate of the top left vertex of the box.
y – Y coordinate of the top left vertex of the box.
width – Length of the box along the x axis.
height – Length of the box along the y axis.
category – The category of the label.
attributes – The attributs of the label.
instance – The instance id of the label.
- Returns
The created
LabeledBox2D
instance.
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads a LabeledBox2D from a dict containing the information of the label.
- Parameters
contents –
A dict containing the information of the 2D bounding box label, whose format should be like:
{ "box2d": { "xmin": <float> "ymin": <float> "xmax": <float> "ymax": <float> }, "category": <str> "attributes": { <key>: <value> ... ... }, "instance": <str> }
- Returns
The loaded
LabeledBox2D
object.
-
class
tensorbay.label.label_box.
LabeledBox3D
(transform: Union[None, tensorbay.geometry.transform.Transform3D, Sequence[Sequence[float]], numpy.ndarray] = None, *, translation: Iterable[float] = (0, 0, 0), rotation: Union[Iterable[float], quaternion.quaternion] = (1, 0, 0, 0), size: Iterable[float] = (0, 0, 0), category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the concept of 3D bounding box label.
LabeledBox3D
is the 3D bounding box type of label, which is often used for object detection in 3D point cloud.- Parameters
transform – The transform of the 3D bounding box label in a
Transform3D
object or a 4x4 or 3x4 transformation matrix.translation – Translation of the 3D bounding box label in a sequence of [x, y, z].
rotation – Rotation of the 3D bounding box label in a sequence of [w, x, y, z] or a 3x3 rotation matrix or a numpy quaternion object.
size – Size of the 3D bounding box label in a sequence of [x, y, z].
category – Category of the 3D bounding box label.
attributes – Attributs of the 3D bounding box label.
instance – The instance id of the 3D bounding box label.
-
category
¶ The category of the label.
- Type
str
-
attributes
¶ The attributes of the label.
- Type
Dict[str, Any]
-
instance
¶ The instance id of the label.
- Type
str
-
size
¶ The size of the 3D bounding box.
-
transform
¶ The transform of the 3D bounding box.
-
dumps
() → Dict[str, Any][source]¶ Dumps the current 3D bounding box label into a dict.
- Returns
A dict containing all the information of the 3D bounding box label, whose format is like:
{ "box3d": { "translation": { "x": <float> "y": <float> "z": <float> }, "rotation": { "w": <float> "x": <float> "y": <float> "z": <float> }, "size": { "x": <float> "y": <float> "z": <float> } }, "category": <str> "attributes": { <key>: <value> ... ... }, "instance": <str> },
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads a LabeledBox3D from a dict containing the information of the label.
- Parameters
contents –
A dict containing the information of the 3D bounding box label, whose format should be like:
{ "box3d": { "translation": { "x": <float> "y": <float> "z": <float> }, "rotation": { "w": <float> "x": <float> "y": <float> "z": <float> }, "size": { "x": <float> "y": <float> "z": <float> } }, "category": <str> "attributes": { <key>: <value> ... ... }, "instance": <str> }
- Returns
The loaded
LabeledBox3D
object.
tensorbay.label.label_classification¶
Classification.
ClassificationSubcatalog
defines the subcatalog for classification type of labels.
Classification
defines the concept of classification label,
which can apply to different types of data, such as images and texts.
-
class
tensorbay.label.label_classification.
Classification
(category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the concept of classification label.
Classification
is the classification type of label, which applies to different types of data, such as images and texts.- Parameters
category – The category of the label.
attributes – The attributes of the label.
-
category
¶ The category of the label.
- Type
str
-
attributes
¶ The attributes of the label.
- Type
Dict[str, Any]
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads a Classification label from a dict containing the label information.
- Parameters
contents –
A dict containing the information of the classification label, whose format should be like:
{ "category": <str> "attributes": { <key>: <value> ... ... } }
- Returns
The loaded
Classification
object.
-
class
tensorbay.label.label_classification.
ClassificationSubcatalog
(*args, **kwds)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the subcatalog for classification type of labels.
-
description
¶ The description of the entire classification subcatalog.
-
categories
¶ All the possible categories in the corresponding dataset stored in a
NameOrderedDict
with the category names as keys and theCategoryInfo
as values.
-
category_delimiter
¶ The delimiter in category values indicating parent-child relationship.
- Type
str
-
attributes
¶ All the possible attributes in the corresponding dataset stored in a
NameOrderedDict
with the attribute names as keys and theAttributeInfo
as values.
-
tensorbay.label.label_keypoints¶
LabeledKeypoints2D, Keypoints2DSubcatalog.
Keypoints2DSubcatalog
defines the subcatalog for 2D keypoints type of labels.
LabeledKeypoints2D
is the 2D keypoints type of label,
which is often used for CV tasks such as human body pose estimation.
-
class
tensorbay.label.label_keypoints.
Keypoints2DSubcatalog
(is_tracking: bool = False)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the subcatalog for 2D keypoints type of labels.
- Parameters
is_tracking – A boolean value indicates whether the corresponding subcatalog contains tracking information.
-
description
¶ The description of the entire 2D keypoints subcatalog.
-
categories
¶ All the possible categories in the corresponding dataset stored in a
NameOrderedDict
with the category names as keys and theCategoryInfo
as values.
-
category_delimiter
¶ The delimiter in category values indicating parent-child relationship.
- Type
str
-
attributes
¶ All the possible attributes in the corresponding dataset stored in a
NameOrderedDict
with the attribute names as keys and theAttributeInfo
as values.
-
is_tracking
¶ Whether the Subcatalog contains tracking information.
-
add_keypoints
(number: int, *, names: Optional[Iterable[str]] = None, skeleton: Optional[Iterable[Iterable[int]]] = None, visible: Optional[str] = None, parent_categories: Union[None, str, Iterable[str]] = None, description: Optional[str] = None) → None[source]¶ Add a type of keypoints to the subcatalog.
- Parameters
number – The number of keypoints.
names – All the names of keypoints.
skeleton – The skeleton of the keypoints indicating which keypoint should connect with another.
visible – The visible type of the keypoints, can only be ‘BINARY’ or ‘TERNARY’. It determines the range of the
Keypoint2D.v
.parent_categories – The parent categories of the keypoints.
description – The description of keypoints.
-
dumps
() → Dict[str, Any][source]¶ Dumps all the information of the keypoints into a dict.
- Returns
A dict containing all the information of this Keypoints2DSubcatalog.
-
property
keypoints
¶ Return the KeypointsInfo of the Subcatalog.
- Returns
A list of
KeypointsInfo
.
-
class
tensorbay.label.label_keypoints.
LabeledKeypoints2D
(keypoints: Optional[Iterable[Iterable[float]]] = None, *, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)[source]¶ Bases:
tensorbay.geometry.polygon.PointList2D
[tensorbay.geometry.keypoint.Keypoint2D
]This class defines the concept of 2D keypoints label.
LabeledKeypoints2D
is the 2D keypoints type of label, which is often used for CV tasks such as human body pose estimation.- Parameters
keypoints – A list of 2D keypoint.
category – The category of the label.
attributes – The attributes of the label.
instance – The instance id of the label.
-
category
¶ The category of the label.
- Type
str
-
attributes
¶ The attributes of the label.
- Type
Dict[str, Any]
-
instance
¶ The instance id of the label.
- Type
str
-
dumps
() → Dict[str, Any][source]¶ Dumps the current 2D keypoints label into a dict.
- Returns
A dict containing all the information of the 2D keypoints label, whose format is like:
{ "keypoints2d": [ { "x": <float> "y": <float> "v": <int> }, ... ... ], "category": <str> "attributes": { <key>: <value> ... ... }, "instance": <str> }
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads a LabeledKeypoints2D from a dict containing the information of the label.
- Parameters
contents –
A dict containing the information of the 2D keypoints label, whose format should be like:
{ "keypoints2d": [ { "x": <float> "y": <float> "v": <int> }, ... ... ], "category": <str> "attributes": { <key>: <value> ... ... }, "instance": <str> }
- Returns
The loaded
LabeledKeypoints2D
object.
tensorbay.label.label_polygon¶
LabeledPolygon2D, Polygon2DSubcatalog.
Polygon2DSubcatalog
defines the subcatalog for 2D polygon type of labels.
LabeledPolygon2D
is the 2D polygon type of label,
which is often used for CV tasks such as semantic segmentation.
-
class
tensorbay.label.label_polygon.
LabeledPolygon2D
(points: Optional[Iterable[Iterable[float]]] = None, *, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)[source]¶ Bases:
tensorbay.geometry.polygon.PointList2D
[tensorbay.geometry.vector.Vector2D
]This class defines the concept of polygon2D label.
LabeledPolygon2D
is the 2D polygon type of label, which is often used for CV tasks such as semantic segmentation.- Parameters
points – A list of 2D points representing the vertexes of the 2D polygon.
category – The category of the label.
attributes – The attributs of the label.
instance – The instance id of the label.
-
category
¶ The category of the label.
- Type
str
-
attributes
¶ The attributes of the label.
- Type
Dict[str, Any]
-
instance
¶ The instance id of the label.
- Type
str
-
dumps
() → Dict[str, Any][source]¶ Dumps the current 2D polygon label into a dict.
- Returns
A dict containing all the information of the 2D polygon label, whose format is like:
{ "polygon": [ { "x": <int> "y": <int> }, ... ... ], "category": <str> "attributes": { <key>: <value> ... ... }, "instance": <str> }
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads a LabeledPolygon2D from a dict containing the information of the label.
- Parameters
contents –
A dict containing the information of the 2D polygon label, whose format should be like:
{ "polygon": [ { "x": <int> "y": <int> }, ... ... ], "category": <str> "attributes": { <key>: <value> ... ... }, "instance": <str> }
- Returns
The loaded
LabeledPolygon2D
object.
-
class
tensorbay.label.label_polygon.
Polygon2DSubcatalog
(is_tracking: bool = False)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the subcatalog for 2D polygon type of labels.
- Parameters
is_tracking – A boolean value indicates whether the corresponding subcatalog contains tracking information.
-
description
¶ The description of the entire 2D polygon subcatalog.
-
categories
¶ All the possible categories in the corresponding dataset stored in a
NameOrderedDict
with the category names as keys and theCategoryInfo
as values.
-
category_delimiter
¶ The delimiter in category values indicating parent-child relationship.
- Type
str
-
attributes
¶ All the possible attributes in the corresponding dataset stored in a
NameOrderedDict
with the attribute names as keys and theAttributeInfo
as values.
-
is_tracking
¶ Whether the Subcatalog contains tracking information.
tensorbay.label.label_polyline¶
LabeledPolyline2D, Polyline2DSubcatalog.
Polyline2DSubcatalog
defines the subcatalog for 2D polyline type of labels.
LabeledPolyline2D
is the 2D polyline type of label,
which is often used for CV tasks such as lane detection.
-
class
tensorbay.label.label_polyline.
LabeledPolyline2D
(points: Optional[Iterable[Iterable[float]]] = None, *, category: Optional[str] = None, attributes: Optional[Dict[str, Any]] = None, instance: Optional[str] = None)[source]¶ Bases:
tensorbay.geometry.polygon.PointList2D
[tensorbay.geometry.vector.Vector2D
]This class defines the concept of polyline2D label.
LabeledPolyline2D
is the 2D polyline type of label, which is often used for CV tasks such as lane detection.- Parameters
points – A list of 2D points representing the vertexes of the 2D polyline.
category – The category of the label.
attributes – The attributes of the label.
instance – The instance id of the label.
-
category
¶ The category of the label.
- Type
str
-
attributes
¶ The attributes of the label.
- Type
Dict[str, Any]
-
instance
¶ The instance id of the label.
- Type
str
-
dumps
() → Dict[str, Any][source]¶ Dumps the current 2D polyline label into a dict.
- Returns
A dict containing all the information of the 2D polyline label, whose format is like:
{ "polyline": [ { "x": <int> "y": <int> }, ... ... ], "category": <str> "attributes": { <key>: <value> ... ... }, "instance": <str> }
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads a LabeledPolyline2D from a dict containing the information of the label.
- Parameters
contents –
A dict containing the information of the 2D polyline label, whose format should be like:
{ "polyline": [ { "x": <int> "y": <int> }, ... ... ], "category": <str> "attributes": { <key>: <value> ... ... }, "instance": <str> }
- Returns
The loaded
LabeledPolyline2D
object.
-
class
tensorbay.label.label_polyline.
Polyline2DSubcatalog
(is_tracking: bool = False)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the subcatalog for 2D polyline type of labels.
- Parameters
is_tracking – A boolean value indicates whether the corresponding subcatalog contains tracking information.
-
description
¶ The description of the entire 2D polyline subcatalog.
-
categories
¶ All the possible categories in the corresponding dataset stored in a
NameOrderedDict
with the category names as keys and theCategoryInfo
as values.
-
category_delimiter
¶ The delimiter in category values indicating parent-child relationship.
- Type
str
-
attributes
¶ All the possible attributes in the corresponding dataset stored in a
NameOrderedDict
with the attribute names as keys and theAttributeInfo
as values.
-
is_tracking
¶ Whether the Subcatalog contains tracking information.
tensorbay.label.label_sentence¶
Word, LabeledSentence, SentenceSubcatalog.
SentenceSubcatalog
defines the subcatalog for audio transcripted sentence type of labels.
Word
is a word within a phonetic transcription sentence,
containing the content of the word, the start and end time in the audio.
LabeledSentence
is the transcripted sentence type of label.
which is often used for tasks such as automatic speech recognition.
-
class
tensorbay.label.label_sentence.
LabeledSentence
(sentence: Optional[Iterable[tensorbay.label.label_sentence.Word]] = None, spell: Optional[Iterable[tensorbay.label.label_sentence.Word]] = None, phone: Optional[Iterable[tensorbay.label.label_sentence.Word]] = None, *, attributes: Optional[Dict[str, Any]] = None)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the concept of phonetic transcription lable.
LabeledSentence
is the transcripted sentence type of label. which is often used for tasks such as automatic speech recognition.- Parameters
sentence – A list of sentence.
spell – A list of spell, only exists in Chinese language.
phone – A list of phone.
attributes – The attributes of the label.
-
sentence
¶ The transcripted sentence.
-
spell
¶ The spell within the sentence, only exists in Chinese language.
-
phone
¶ The phone of the sentence label.
-
attributes
¶ The attributes of the label.
- Type
Dict[str, Any]
-
dumps
() → Dict[str, Any][source]¶ Dumps the current label into a dict.
- Returns
A dict containing all the information of the sentence label, whose format is like:
{ "sentence": [ { "text": <str> "begin": <float> "end": <float> } ... ... ], "spell": [ { "text": <str> "begin": <float> "end": <float> } ... ... ], "phone": [ { "text": <str> "begin": <float> "end": <float> } ... ... ], "attributes": { <key>: <value>, ... ... } }
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads a LabeledSentence from a dict containing the information of the label.
- Parameters
contents –
A dict containing the information of the sentence label, whose format should be like:
{ "sentence": [ { "text": <str> "begin": <float> "end": <float> } ... ... ], "spell": [ { "text": <str> "begin": <float> "end": <float> } ... ... ], "phone": [ { "text": <str> "begin": <float> "end": <float> } ... ... ], "attributes": { <key>: <value>, ... ... } }
- Returns
The loaded
LabeledSentence
object.
-
class
tensorbay.label.label_sentence.
SentenceSubcatalog
(is_sample: bool = False, sample_rate: Optional[int] = None, lexicon: Optional[List[List[str]]] = None)[source]¶ Bases:
tensorbay.utility.type.TypeMixin
[tensorbay.label.basic.LabelType
],tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the subcatalog for audio transcripted sentence type of labels.
- Parameters
is_sample – A boolen value indicates whether time format is sample related.
sample_rate – The number of samples of audio carried per second.
lexicon – A list consists all of text and phone.
-
description
¶ The description of the entire sentence subcatalog.
-
is_sample
¶ A boolen value indicates whether time format is sample related.
-
sample_rate
¶ The number of samples of audio carried per second.
-
lexicon
¶ A list consists all of text and phone.
-
attributes
¶ All the possible attributes in the corresponding dataset stored in a
NameOrderedDict
with the attribute names as keys and theAttributeInfo
as values.
- Raises
TypeError – When sample_rate is None and is_sample is True.
-
class
tensorbay.label.label_sentence.
Word
(text: str, begin: Optional[float] = None, end: Optional[float] = None)[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the concept of word.
Word
is a word within a phonetic transcription sentence, containing the content of the word, the start and end time in the audio.- Parameters
text – The content of the word.
begin – The begin time of the word in the audio.
end – The end time of the word in the audio.
-
text
¶ The content of the word.
-
begin
¶ The begin time of the word in the audio.
-
end
¶ The end time of the word in the audio.
-
dumps
() → Dict[str, Union[str, float]][source]¶ Dumps the current word into a dict.
- Returns
A dict containing all the information of the word, whose format is like:
{ "text": str , "begin": float, "end": float, }
-
classmethod
loads
(contents: Dict[str, Union[str, float]]) → _T[source]¶ Loads a Word from a dict containing the information of the word.
- Parameters
contents –
A dict containing the information of the word, whose format should be like:
{ "text": str , "begin": float, "end": float, }
- Returns
The loaded
Word
object.
tensorbay.label.supports¶
CatagoryInfo, KeypointsInfo and different SubcatalogMixin classes.
CatagoryInfo
defines a category with the name and description of it.
KeypointsInfo
defines the structure of a set of keypoints.
SubcatalogMixin
is the base class of different mixin classes for subcatalog.
mixin classes for subcatalog |
explaination |
---|---|
a mixin class supporting tracking information of a subcatalog |
|
a mixin class supporting category information of a subcatalog |
|
a mixin class supporting attribute information of a subcatalog |
-
class
tensorbay.label.supports.
AttributesMixin
[source]¶ Bases:
tensorbay.label.supports.SubcatalogMixin
A mixin class supporting attribute information of a subcatalog.
-
attributes
¶ All the possible attributes in the corresponding dataset stored in a
NameOrderedDict
with the attribute names as keys and theAttributeInfo
as values.
-
add_attribute
(name: str, *, type_: Union[str, None, Type[Optional[Union[list, bool, int, float, str]]], Iterable[Union[str, None, Type[Optional[Union[list, bool, int, float, str]]]]]] = '', enum: Optional[Iterable[Optional[Union[str, float, bool]]]] = None, minimum: Optional[float] = None, maximum: Optional[float] = None, items: Optional[tensorbay.label.attributes.Items] = None, parent_categories: Union[None, str, Iterable[str]] = None, description: Optional[str] = None) → None[source]¶ Add an attribute to the Subcatalog.
- Parameters
name – The name of the attribute.
type – The type of the attribute value, could be a single type or multi-types. The type must be within the followings: - array - boolean - integer - number - string - null - instance
enum – All the possible values of an enumeration attribute.
minimum – The minimum value of number type attribute.
maximum – The maximum value of number type attribute.
items – The items inside array type attributes.
parent_categories – The parent categories of the attribute.
description – The description of the attributes.
-
-
class
tensorbay.label.supports.
CategoriesMixin
[source]¶ Bases:
tensorbay.label.supports.SubcatalogMixin
A mixin class supporting category information of a subcatalog.
-
categories
¶ All the possible categories in the corresponding dataset stored in a
NameOrderedDict
with the category names as keys and theCategoryInfo
as values.
-
category_delimiter
¶ The delimiter in category values indicating parent-child relationship.
- Type
str
-
-
class
tensorbay.label.supports.
CategoryInfo
(name: str, description: Optional[str] = None)[source]¶ Bases:
tensorbay.utility.name.NameMixin
This class represents the information of a category, including category name and description.
- Parameters
name – The name of the category.
description – The description of the category.
-
name
¶ The name of the category.
-
description
¶ The description of the category.
-
dumps
() → Dict[str, str][source]¶ Dumps the CatagoryInfo into a dict.
- Returns
A dict containing the information in the CategoryInfo, whose format is like:
{ "name": <str> "description": <str> }
-
classmethod
loads
(contents: Dict[str, str]) → _T[source]¶ Loads a CategoryInfo from a dict containing the category.
- Parameters
contents –
A dict containing the information of the category, whose format should be like:
{ "name": <str> "description": <str> }
- Returns
The loaded
CategoryInfo
object.
-
class
tensorbay.label.supports.
IsTrackingMixin
(is_tracking: bool = False)[source]¶ Bases:
tensorbay.label.supports.SubcatalogMixin
A mixin class supporting tracking information of a subcatalog.
- Parameters
is_tracking – Whether the Subcatalog contains tracking information.
-
is_tracking
¶ Whether the Subcatalog contains tracking information.
-
class
tensorbay.label.supports.
KeypointsInfo
(number: int, *, names: Optional[Iterable[str]] = None, skeleton: Optional[Iterable[Iterable[int]]] = None, visible: Optional[str] = None, parent_categories: Union[None, str, Iterable[str]] = None, description: Optional[str] = None)[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
This class defines the structure of a set of keypoints.
- Parameters
number – The number of the set of keypoints.
names – All the names of the keypoints.
skeleton – The skeleton of the keypoints indicating which keypoint should connect with another.
visible – The visible type of the keypoints, can only be ‘BINARY’ or ‘TERNARY’. It determines the range of the
Keypoint2D.v
.parent_categories – The parent categories of the keypoints.
description – The description of the keypoints.
-
names
¶ All the names of the keypoints.
-
skeleton
¶ The skeleton of the keypoints indicating which keypoint should connect with another.
-
visible
¶ The visible type of the keypoints, can only be ‘BINARY’ or ‘TERNARY’. It determines the range of the
Keypoint2D.v
.
-
parent_categories
¶ The parent categories of the keypoints.
-
description
¶ The description of the keypoints.
-
dumps
() → Dict[str, Any][source]¶ Dumps all the keypoint information into a dict.
- Returns
A dict containing all the information of the keypoint, whose format is like:
{ "number": "names": [...], "skeleton": [ [<index>, <index>], ... ], "visible": "TERNARY" or "BINARY" "parentCategories": [...], "description": }
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads a KeypointsInfo from a dict containing the information of the keypoints.
- Parameters
contents –
A dict containing all the information of the set of keypoints, whose format should be like:
{ "number": "names": [...], "skeleton": [ [<index>, <index>], ... ], "visible": "TERNARY" or "BINARY" "parentCategories": [...], "description": }
- Returns
The loaded
KeypointsInfo
object.
-
property
number
¶ Return the number of the keypoints.
- Returns
The number of the keypoints.
-
class
tensorbay.label.supports.
SubcatalogMixin
[source]¶ Bases:
tensorbay.utility.common.EqMixin
The base class of different mixin classes for subcatalog.
tensorbay.opendataset¶
tensorbay.opendataset.AnimalPose.loader¶
Dataloader of 5 Categories AnimalPose dataset and 7 Categories AnimalPose dataset.
-
tensorbay.opendataset.AnimalPose.loader.
AnimalPose5
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of 5 Categories AnimalPose dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> keypoint_image_part1/ cat/ 2007_000549.jpg 2007_000876.jpg ... ... PASCAL2011_animal_annotation/ cat/ 2007_000549_1.xml 2007_000876_1.xml 2007_000876_2.xml ... ... animalpose_image_part2/ cat/ ca1.jpeg ca2.jpeg ... ... animalpose_anno2/ cat/ ca1.xml ca2.xml ...
- Returns
Loaded Dataset object.
-
tensorbay.opendataset.AnimalPose.loader.
AnimalPose7
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of 7 Categories AnimalPose dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> bndbox_image/ antelope/ Img-77.jpg ... ... bndbox_anno/ antelope.json ...
- Returns
loaded Dataset object.
tensorbay.opendataset.AnimalsWithAttributes2.loader¶
Dataloader of the Animals with attributes 2 dataset.
-
tensorbay.opendataset.AnimalsWithAttributes2.loader.
AnimalsWithAttributes2
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the Animals with attributes 2 dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> classes.txt predicates.txt predicate-matrix-binary.txt JPEGImages/ <classname>/ <imagename>.jpg ... ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.BSTLD.loader¶
Dataloader of the BSTLD dataset.
-
tensorbay.opendataset.BSTLD.loader.
BSTLD
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the BSTLD dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> rgb/ additional/ 2015-10-05-10-52-01_bag/ <image_name>.jpg ... ... test/ <image_name>.jpg ... train/ 2015-05-29-15-29-39_arastradero_traffic_light_loop_bag/ <image_name>.jpg ... ... test.yaml train.yaml additional_train.yaml
- Returns
Loaded Dataset object.
tensorbay.opendataset.CarConnection.loader¶
Dataloader of the The Car Connection Picture dataset.
-
tensorbay.opendataset.CarConnection.loader.
CarConnection
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the The Car Connection Picture dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> <imagename>.jpg ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.CoinImage.loader¶
Dataloader of the Coin Image dataset.
-
tensorbay.opendataset.CoinImage.loader.
CoinImage
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the Coin Image dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> classes.csv <imagename>.png ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.CompCars.loader¶
Dataloader of the CompCars dataset.
-
tensorbay.opendataset.CompCars.loader.
CompCars
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the CompCars dataset.
- Parameters
path –
The root path of dataset. The file structure should be like:
<path> data/ image/ <make name id>/ <model name id>/ <year>/ <image name>.jpg ... ... ... ... label/ <make name id>/ <model name id>/ <year>/ <image name>.txt ... ... ... ... misc/ attributes.txt car_type.mat make_model_name.mat train_test_split/ classification/ train.txt test.txt
- Returns
Loaded Dataset object.
tensorbay.opendataset.DeepRoute.loader¶
Dataloader of the DeepRoute Open Dataset.
-
tensorbay.opendataset.DeepRoute.loader.
DeepRoute
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the DeepRoute Open Dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> pointcloud/ 00001.bin 00002.bin ... 10000.bin groundtruth/ 00001.txt 00002.txt ... 10000.txt
- Returns
Loaded Dataset object.
tensorbay.opendataset.DogsVsCats.loader¶
Dataloader of the DogsVsCats dataset.
-
tensorbay.opendataset.DogsVsCats.loader.
DogsVsCats
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the DogsVsCats dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> train/ cat.0.jpg ... dog.0.jpg ... test/ 1000.jpg 1001.jpg ...
- Returns
Loaded
Dataset
object.
tensorbay.opendataset.DownsampledImagenet.loader¶
Dataloader of the Downsampled Imagenet dataset.
-
tensorbay.opendataset.DownsampledImagenet.loader.
DownsampledImagenet
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the Downsampled Imagenet dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> valid_32x32/ <imagename>.png ... valid_64x64/ <imagename>.png ... train_32x32/ <imagename>.png ... train_64x64/ <imagename>.png ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.Elpv.loader¶
Dataloader of the elpv dataset.
-
tensorbay.opendataset.Elpv.loader.
Elpv
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the elpv dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> labels.csv images/ cell0001.png ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.FLIC.loader¶
Dataloader of the FLIC dataset.
-
tensorbay.opendataset.FLIC.loader.
FLIC
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the FLIC dataset.
- Parameters
path –
The root directory of the dataset. The folder structure should be like:
<path> exampls.mat images/ 2-fast-2-furious-00003571.jpg ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.FSDD.loader¶
Dataloader of the Free Spoken Digit dataset.
-
tensorbay.opendataset.FSDD.loader.
FSDD
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the Free Spoken Digit dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> recordings/ 0_george_0.wav 0_george_1.wav ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.Flower.loader¶
Dataloader of the 17 Category Flower dataset and the 102 Category Flower dataset.
-
tensorbay.opendataset.Flower.loader.
Flower102
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the 102 Category Flower dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> jpg/ image_00001.jpg ... imagelabels.mat setid.mat
- Returns
A loaded dataset.
-
tensorbay.opendataset.Flower.loader.
Flower17
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the 17 Category Flower dataset.
The dataset are 3 separate splits. The results in the paper are averaged over the 3 splits. We just use (trn1, val1, tst1) to split it.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> jpg/ image_0001.jpg ... datasplits.mat
- Returns
A loaded dataset.
tensorbay.opendataset.HardHatWorkers.loader¶
Dataloader of the Hard Hat Workers dataset.
-
tensorbay.opendataset.HardHatWorkers.loader.
HardHatWorkers
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the Hard Hat Workers dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> annotations/ hard_hat_workers0.xml ... images/ hard_hat_workers0.png ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.HeadPoseImage.loader¶
Dataloader of the Head Pose Image dataset.
-
tensorbay.opendataset.HeadPoseImage.loader.
HeadPoseImage
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the Head Pose Image dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> Person01/ person01100-90+0.jpg person01100-90+0.txt person01101-60-90.jpg person01101-60-90.txt ... Person02/ Person03/ ... Person15/
- Returns
Loaded Dataset object.
tensorbay.opendataset.ImageEmotion.loader¶
Dataloader of the ImageEmotionAbstract dataset and the ImageEmotionArtphoto dataset.
-
tensorbay.opendataset.ImageEmotion.loader.
ImageEmotionAbstract
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the ImageEmotionAbstract dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> ABSTRACT_groundTruth.csv abstract_xxxx.jpg ...
- Returns
Loaded Dataset object.
-
tensorbay.opendataset.ImageEmotion.loader.
ImageEmotionArtphoto
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the ImageEmotionArtphoto dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> <filename>.jpg ...
- Returns
Loaded Dataset object
tensorbay.opendataset.JHU_CROWD.loader¶
Dataloader of the JHU-CROWD++ dataset.
-
tensorbay.opendataset.JHU_CROWD.loader.
JHU_CROWD
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the JHU-CROWD++ dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> train/ images/ 0000.jpg ... gt/ 0000.txt ... image_labels.txt test/ val/
- Returns
Loaded Dataset object.
tensorbay.opendataset.KenyanFood.loader¶
Dataloader of the Kenyan Food or Nonfood dataset and Kenyan Food Type dataset.
-
tensorbay.opendataset.KenyanFood.loader.
KenyanFoodOrNonfood
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the Kenyan Food or Nonfood dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> images/ food/ 236171947206673742.jpg ... nonfood/ 168223407.jpg ... data.csv split.py test.txt train.txt
- Returns
Loaded Dataset object.
-
tensorbay.opendataset.KenyanFood.loader.
KenyanFoodType
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the Kenyan Food Type dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> test.csv test/ bhaji/ 1611654056376059197.jpg ... chapati/ 1451497832469337023.jpg ... ... train/ bhaji/ 190393222473009410.jpg ... chapati/ 1310641031297661755.jpg ... val/ bhaji/ 1615408264598518873.jpg ... chapati/ 1553618479852020228.jpg ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.KylbergTexture.loader¶
Dataloader of the Kylberg Texture dataset.
-
tensorbay.opendataset.KylbergTexture.loader.
KylbergTexture
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the Kylberg Texture dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> originalPNG/ <imagename>.png ... withoutRotateAll/ <imagename>.png ... RotateAll/ <imagename>.png ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.LISATrafficLight.loader¶
Dataloader of the LISA traffic light dataset.
-
tensorbay.opendataset.LISATrafficLight.loader.
LISATrafficLight
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the LISA traffic light dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> Annotations/Annotations/ daySequence1/ daySequence2/ dayTrain/ dayClip1/ dayClip10/ ... dayClip9/ nightSequence1/ nightSequence2/ nightTrain/ nightClip1/ nightClip2/ ... nightClip5/ daySequence1/daySequence1/ daySequence2/daySequence2/ dayTrain/dayTrain/ dayClip1/ dayClip10/ ... dayClip9/ nightSequence1/nightSequence1/ nightSequence2/nightSequence2/ nightTrain/nightTrain/ nightClip1/ nightClip2/ ... nightClip5/
- Returns
Loaded Dataset object.
- Raises
TypeError – When frame number is discontinuous.
tensorbay.opendataset.LeedsSportsPose.loader¶
Dataloader of the LeedsSportsPose dataset.
-
tensorbay.opendataset.LeedsSportsPose.loader.
LeedsSportsPose
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the LeedsSportsPose dataset.
- Parameters
path –
The root directory of the dataset. The folder structure should be like:
<path> joints.mat images/ im0001.jpg im0002.jpg ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.NeolixOD.loader¶
Dataloader of the NeolixOD dataset.
-
tensorbay.opendataset.NeolixOD.loader.
NeolixOD
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the NeolixOD dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> bins/ <id>.bin labels/ <id>.txt ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.Newsgroups20.loader¶
Dataloader of the Newsgroups20 dataset.
-
tensorbay.opendataset.Newsgroups20.loader.
Newsgroups20
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the Newsgroups20 dataset.
- Parameters
path –
The root directory of the dataset. The folder structure should be like:
<path> 20news-18828/ alt.atheism/ 49960 51060 51119 51120 ... comp.graphics/ comp.os.ms-windows.misc/ comp.sys.ibm.pc.hardware/ comp.sys.mac.hardware/ comp.windows.x/ misc.forsale/ rec.autos/ rec.motorcycles/ rec.sport.baseball/ rec.sport.hockey/ sci.crypt/ sci.electronics/ sci.med/ sci.space/ soc.religion.christian/ talk.politics.guns/ talk.politics.mideast/ talk.politics.misc/ talk.religion.misc/ 20news-bydate-test/ 20news-bydate-train/ 20_newsgroups/
- Returns
Loaded Dataset object.
tensorbay.opendataset.NightOwls.loader¶
Dataloader of the NightOwls dataset.
-
tensorbay.opendataset.NightOwls.loader.
NightOwls
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the NightOwls dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> nightowls_test/ <image_name>.png ... nightowls_training/ <image_name>.png ... nightowls_validation/ <image_name>.png ... nightowls_training.json nightowls_validation.json
- Returns
Loaded Dataset object.
tensorbay.opendataset.RP2K.loader¶
Dataloader of the RP2K dataset.
-
tensorbay.opendataset.RP2K.loader.
RP2K
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the RP2K dataset.
- Parameters
path –
The root directory of the dataset. The file structure of RP2K looks like:
<path> all/ test/ <catagory>/ <image_name>.jpg ... ... train/ <catagory>/ <image_name>.jpg ... ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.THCHS30.loader¶
Dataloader of the THCHS-30 dataset.
-
tensorbay.opendataset.THCHS30.loader.
THCHS30
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the THCHS-30 dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> lm_word/ lexicon.txt data/ A11_0.wav.trn ... dev/ A11_101.wav ... train/ test/
- Returns
Loaded Dataset object.
tensorbay.opendataset.THUCNews.loader¶
Dataloader of the THUCNews dataset.
-
tensorbay.opendataset.THUCNews.loader.
THUCNews
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the THUCNews dataset.
- Parameters
path –
The root directory of the dataset. The folder structure should be like:
<path> <category>/ 0.txt 1.txt 2.txt 3.txt ... <category>/ ...
- Returns
Loaded Dataset object.
tensorbay.opendataset.TLR.loader¶
Dataloader of the TLR dataset.
-
tensorbay.opendataset.TLR.loader.
TLR
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the TLR dataset.
- Parameters
path –
The root directory of the dataset. The file structure should like:
<path> root_path/ Lara3D_URbanSeq1_JPG/ frame_011149.jpg frame_011150.jpg frame_<frame_index>.jpg ... Lara_UrbanSeq1_GroundTruth_cvml.xml
- Returns
Loaded Dataset object.
tensorbay.opendataset.WIDER_FACE.loader¶
Dataloader of the WIDER FACE dataset.
-
tensorbay.opendataset.WIDER_FACE.loader.
WIDER_FACE
(path: str) → tensorbay.dataset.dataset.Dataset[source]¶ Dataloader of the WIDER FACE dataset.
- Parameters
path –
The root directory of the dataset. The file structure should be like:
<path> WIDER_train/ images/ 0--Parade/ 0_Parade_marchingband_1_100.jpg 0_Parade_marchingband_1_1015.jpg 0_Parade_marchingband_1_1030.jpg ... 1--Handshaking/ ... 59--people--driving--car/ 61--Street_Battle/ WIDER_val/ ... WIDER_test/ ... wider_face_split/ wider_face_train_bbx_gt.txt wider_face_val_bbx_gt.txt
- Returns
Loaded Dataset object.
tensorbay.sensor¶
tensorbay.sensor.intrinsics¶
CameraMatrix, DistortionCoefficients and CameraIntrinsics.
CameraMatrix
represents camera matrix. It describes the mapping of
a pinhole camera model from 3D points in the world to 2D points in an image.
DistortionCoefficients
represents camera distortion coefficients. It is the deviation
from rectilinear projection including radial distortion and tangential distortion.
CameraIntrinsics
represents camera intrinsics including camera matrix and
distortion coeffecients. It describes the mapping of the scene in front of the camera
to the pixels in the final image.
CameraMatrix
, DistortionCoefficients
and CameraIntrinsics
class can
all be initialized by __init__()
or loads()
method.
-
class
tensorbay.sensor.intrinsics.
CameraIntrinsics
(camera_matrix: Optional[Sequence[Sequence[float]]] = None, *, _init_distortion: bool = True, **kwargs: float)[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
CameraIntrinsics represents camera intrinsics.
Camera intrinsic parameters including camera matrix and distortion coeffecients. They describe the mapping of the scene in front of the camera to the pixels in the final image.
- Parameters
camera_matrix – A 3x3 Sequence of the camera matrix.
_init_distortion – Whether init distortion, default is True.
**kwargs – Float values to initialize
CameraMatrix
andDistortionCoefficients
.
-
_camera_matrix
¶ A 3x3 Sequence of the camera matrix.
-
_distortion_coefficients
¶ It is the deviation from rectilinear projection. It includes radial distortion and tangential distortion.
-
property
camera_matrix
¶ Get the camera matrix of the camera intrinsics.
- Returns
CameraMatrix
class object containing fx, fy, cx, cy, skew(optional).
-
property
distortion_coefficients
¶ Get the distortion coefficients of the camera intrinsics, could be None.
- Returns
DistortionCoefficients
class object containing tangential and radial distortion coefficients.
-
dumps
() → Dict[str, Dict[str, float]][source]¶ Dumps the camera intrinsics into a dict.
- Returns
A dict containing camera intrinsics.
-
classmethod
loads
(contents: Dict[str, Dict[str, float]]) → _T[source]¶ Loads CameraIntrinsics from a dict containing the information.
- Parameters
contents – A dict containig camera matrix and distortion coefficients.
- Returns
A
CameraIntrinsics
instance containing information from the contents dict.
-
project
(point: Sequence[float], is_fisheye: bool = False) → tensorbay.geometry.vector.Vector2D[source]¶ Project a point to the pixel coordinates.
If distortion coefficients are provided, distort the point before projection.
- Parameters
point – A Sequence containing coordinates of the point to be projected.
is_fisheye – Whether the sensor is fisheye camera, default is False.
- Returns
The coordinates on the pixel plane where the point is projected to.
-
class
tensorbay.sensor.intrinsics.
CameraMatrix
(matrix: Optional[Sequence[Sequence[float]]] = None, **kwargs: float)[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
CameraMatrix represents camera matrix.
Camera matrix describes the mapping of a pinhole camera model from 3D points in the world to 2D points in an image.
- Parameters
matrix – A 3x3 Sequence of camera matrix.
**kwargs – Float values with keys: “fx”, “fy”, “cx”, “cy” and “skew”(optional).
-
fx
¶ The x axis focal length expressed in pixels.
-
fy
¶ The y axis focal length expressed in pixels.
-
cx
¶ The x coordinate of the so called principal point that should be in the center of the image.
-
cy
¶ The y coordinate of the so called principal point that should be in the center of the image.
-
skew
¶ It causes shear distortion in the projected image.
- Raises
TypeError – When only keyword arguments with incorrect keys are provided, or when no arguments are provided.
-
as_matrix
() → numpy.ndarray[source]¶ Return the camera matrix as a 3x3 numpy array.
- Returns
A 3x3 numpy array representing the camera matrix.
-
dumps
() → Dict[str, float][source]¶ Dumps the camera matrix into a dict.
- Returns
A dict containing the information of the camera matrix.
-
classmethod
loads
(contents: Dict[str, float]) → _T[source]¶ Loads CameraMatrix from a dict containing the information of the camera matrix.
- Parameters
contents – A dict containing the information of the camera matrix.
- Returns
A
CameraMatrix
instance contains the information from the contents dict.
-
project
(point: Sequence[float]) → tensorbay.geometry.vector.Vector2D[source]¶ Project a point to the pixel coordinates.
- Parameters
point – A Sequence containing the coordinates of the point to be projected.
- Returns
The pixel coordinates.
- Raises
TypeError – When the dimension of the input point is neither two nor three.
-
class
tensorbay.sensor.intrinsics.
DistortionCoefficients
(**kwargs: float)[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
DistortionCoefficients represents camera distortion coefficients.
Distortion is the deviation from rectilinear projection including radial distortion and tangential distortion.
- Parameters
**kwargs – Float values with keys: k1, k2, … and p1, p2, …
- Raises
TypeError – When tangential and radial distortion is not provided to initialize class.
-
distort
(point: Sequence[float], is_fisheye: bool = False) → tensorbay.geometry.vector.Vector2D[source]¶ Add distortion to a point.
- Parameters
point – A Sequence containing the coordinates of the point to be distorted.
is_fisheye – Whether the sensor is fisheye camera, default is False.
- Raises
TypeError – When the dimension of the input point is neither two nor three.
- Returns
Distorted 2d point.
-
dumps
() → Dict[str, float][source]¶ Dumps the distortion coefficients into a dict.
- Returns
A dict containing the information of distortion coefficients.
-
classmethod
loads
(contents: Dict[str, float]) → _T[source]¶ Loads DistortionCoefficients from a dict containing the information.
- Parameters
contents – A dict containig distortion coefficients of a camera.
- Returns
A
DistortionCoefficients
instance containing information from the contents dict.
tensorbay.sensor.sensor¶
SensorType, Sensor, Lidar, Radar, Camera and FisheyeCamera.
SensorType
is an enumeration type. It includes ‘LIDAR’, ‘RADAR’, ‘CAMERA’ and
‘FISHEYE_CAMERA’.
Sensor
defines the concept of sensor. It includes name, description, translation
and rotation.
A Sensor
class can be initialized by Sensor.__init__()
or
Sensor.loads()
method.
Lidar
defines the concept of lidar. It is a kind of sensor for measuring distances by
illuminating the target with laser light and measuring the reflection.
Radar
defines the concept of radar. It is a detection system that uses radio waves to
determine the range, angle, or velocity of objects.
Camera
defines the concept of camera. It includes name, description, translation,
rotation, cameraMatrix and distortionCoefficients.
FisheyeCamera
defines the concept of fisheye camera. It is an ultra wide-angle lens that
produces strong visual distortion intended to create a wide panoramic or hemispherical image.
-
class
tensorbay.sensor.sensor.
Camera
(name: str)[source]¶ Bases:
tensorbay.utility.name.NameMixin
,tensorbay.utility.type.TypeMixin
[tensorbay.sensor.sensor.SensorType
]Camera defines the concept of camera.
Camera
includes name, description, translation, rotation, cameraMatrix and distortionCoefficients.-
extrinsics
¶ The translation and rotation of the camera.
-
intrinsics
¶ The camera matrix and distortion coefficients of the camera.
-
dumps
() → Dict[str, Any][source]¶ Dumps the camera into a dict.
- Returns
A dict containing name, description, extrinsics and intrinsics.
-
classmethod
loads
(contents: Dict[str, Any]) → _T[source]¶ Loads a Camera from a dict containing the camera information.
- Parameters
contents – A dict containing name, description, extrinsics and intrinsics.
- Returns
A
Camera
instance containing information from contents dict.
-
-
class
tensorbay.sensor.sensor.
FisheyeCamera
(name: str)[source]¶ Bases:
tensorbay.utility.name.NameMixin
,tensorbay.utility.type.TypeMixin
[tensorbay.sensor.sensor.SensorType
]FisheyeCamera defines the concept of fisheye camera.
Fisheye camera is an ultra wide-angle lens that produces strong visual distortion intended to create a wide panoramic or hemispherical image.
-
class
tensorbay.sensor.sensor.
Lidar
(name: str)[source]¶ Bases:
tensorbay.utility.name.NameMixin
,tensorbay.utility.type.TypeMixin
[tensorbay.sensor.sensor.SensorType
]Lidar defines the concept of lidar.
Lidar
is a kind of sensor for measuring distances by illuminating the target with laser light and measuring the reflection.
-
class
tensorbay.sensor.sensor.
Radar
(name: str)[source]¶ Bases:
tensorbay.utility.name.NameMixin
,tensorbay.utility.type.TypeMixin
[tensorbay.sensor.sensor.SensorType
]Radar defines the concept of radar.
Radar
is a detection system that uses radio waves to determine the range, angle, or velocity of objects.
-
class
tensorbay.sensor.sensor.
Sensor
(name: str)[source]¶ Bases:
tensorbay.utility.name.NameMixin
,tensorbay.utility.type.TypeMixin
[tensorbay.sensor.sensor.SensorType
]Sensor defines the concept of sensor.
Sensor
includes name, description, translation and rotation.-
extrinsics
¶ The translation and rotation of the sensor.
-
dumps
() → Dict[str, Any][source]¶ Dumps the sensor into a dict.
- Returns
A dict containing the information of the sensor.
-
static
loads
(contents: Dict[str, Any]) → _Type[source]¶ Loads a Sensor from a dict containing the sensor information.
- Parameters
contents – A dict containing name, description and sensor extrinsics.
- Returns
A
Sensor
instance containing the information from the contents dict.
-
set_extrinsics
(transform: Union[None, tensorbay.geometry.transform.Transform3D, Sequence[Sequence[float]], numpy.ndarray] = None, *, translation: Iterable[float] = (0, 0, 0), rotation: Union[Iterable[float], quaternion.quaternion] = (1, 0, 0, 0)) → None[source]¶ Set the extrinsics of the sensor.
- Parameters
transform – A
Transform3D
object representing the extrinsics.translation – Translation parameters.
rotation – Rotation in a sequence of [w, x, y, z] or 3x3 rotation matrix or numpy quaternion.
-
-
class
tensorbay.sensor.sensor.
SensorType
(value)[source]¶ Bases:
tensorbay.utility.type.TypeEnum
SensorType is an enumeration type.
It includes ‘LIDAR’, ‘RADAR’, ‘CAMERA’ and ‘FISHEYE_CAMERA’.
tensorbay.utility¶
tensorbay.utility.common¶
Common_loads method, EqMixin class.
common_loads()
is a common method for loading an object from a dict or a list of dict.
EqMixin
is a mixin class to support __eq__() method,
which compares all the instance variables.
-
class
tensorbay.utility.common.
EqMixin
[source]¶ Bases:
object
A mixin class to support __eq__() method.
The __eq__() method defined here compares all the instance variables.
-
tensorbay.utility.common.
common_loads
(object_class: Type[_T], contents: Any) → _T[source]¶ A common method for loading an object from a dict or a list of dict.
- Parameters
object_class – The class of the object to be loaded.
contents – The information of the object in a dict or a list of dict.
- Returns
The loaded object.
tensorbay.utility.name¶
NameMixin, NameSortedDict, NameSortedList and NameOrderedDict.
NameMixin
is a mixin class for instance which has immutable name and mutable description.
NameSortedDict
is a sorted mapping class which contains NameMixin
.
The corrsponding key is the ‘name’ of NameMixin
.
NameSortedList
is a sorted sequence class which contains NameMixin
.
It is maintained in sorted order according to the ‘name’ of NameMixin
.
NameOrderedDict
is an ordered mapping class which contains NameMixin
.
The corrsponding key is the ‘name’ of NameMixin
.
-
class
tensorbay.utility.name.
NameMixin
(name: str, description: Optional[str] = None)[source]¶ Bases:
tensorbay.utility.repr.ReprMixin
,tensorbay.utility.common.EqMixin
A mixin class for instance which has immutable name and mutable description.
- Parameters
name – Name of the class.
description – Description of the class.
-
classmethod
loads
(contents: Dict[str, str]) → _P[source]¶ Loads a NameMixin from a dict containing the information of the NameMixin.
-
property
name
¶ Return name of the instance.
- Returns
Name of the instance.
-
class
tensorbay.utility.name.
NameOrderedDict
[source]¶ Bases:
tensorbay.utility.user.UserMapping
[str
,tensorbay.utility.name._T
]Name ordered dict is an ordered mapping which contains NameMixin.
The corrsponding key is the ‘name’ of
NameMixin
.
-
class
tensorbay.utility.name.
NameSortedDict
(data: Optional[Mapping[str, _T]] = None)[source]¶ Bases:
tensorbay.utility.user.UserMapping
[str
,tensorbay.utility.name._T
]Name sorted dict keys are maintained in sorted order.
Name sorted dict is a sorted mapping which contains
NameMixin
. The corrsponding key is the ‘name’ ofNameMixin
.- Parameters
data – A mapping from str to
NameMixin
which needs to be transferred toNameSortedDict
.
-
class
tensorbay.utility.name.
NameSortedList
[source]¶ Bases:
Sequence
[tensorbay.utility.name._T
]Name sorted list is a sorted sequence which contains NameMixin.
It is maintained in sorted order according to the ‘name’ of
NameMixin
.
tensorbay.utility.repr¶
ReprType and ReprMixin.
ReprType
is an enumeration type, which defines the repr strategy type and includes
‘INSTANCE’, ‘SEQUENCE’, ‘MAPPING’.
ReprMixin
provides customized repr config and method.
tensorbay.utility.tbrn¶
TensorBay Resource Name (TBRN) related classes.
TBRNType
is an enumeration type, which has 7 types: ‘DATASET’, ‘SEGMENT’, ‘FRAME’,
‘SEGMENT_SENSOR’, ‘FRAME_SENSOR’, ‘NORMAL_FILE’ and ‘FUSION_FILE’.
TBRN
is a TensorBay Resource Name(TBRN) parser and generator.
-
class
tensorbay.utility.tbrn.
TBRN
(dataset_name: Optional[str] = None, segment_name: Optional[str] = None, frame_index: Optional[int] = None, sensor_name: Optional[str] = None, *, remote_path: Optional[str] = None, tbrn: Optional[str] = None)[source]¶ Bases:
object
TBRN is a TensorBay Resource Name(TBRN) parser and generator.
Use as a generator:
>>> info = TBRN("VOC2010", "train", remote_path="2012_004330.jpg") >>> info.type <TBRNType.NORMAL_FILE: 5> >>> info.get_tbrn() 'tb:VOC2010:train://2012_004330.jpg' >>> print(info) 'tb:VOC2010:train://2012_004330.jpg'
Use as a parser:
>>> tbrn = "tb:VOC2010:train://2012_004330.jpg" >>> info = TBRN(tbrn=tbrn) >>> info.dataset 'VOC2010' >>> info.segment_name 'train' >>> info.remote_path '2012_004330.jpg'
- Parameters
dataset_name – Name of the dataset.
segment_name – Name of the segment.
frame_index – Index of the frame.
sensor_name – Name of the sensor.
remote_path – Object path of the file.
tbrn – Full TBRN string.
- Raises
TypeError – The TBRN is invalid.
-
property
dataset_name
¶ Return the dataset name.
- Returns
The dataset name.
-
property
frame_index
¶ Return the frame index.
- Returns
The frame index.
-
get_tbrn
(frame_width: int = 0) → str[source]¶ Generate the full TBRN string.
- Parameters
frame_width – Add ‘0’ at the beginning of the frame_index, until it reaches the frame_width.
- Returns
The full TBRN string.
-
property
remote_path
¶ Return the object path.
- Returns
The object path.
-
property
segment_name
¶ Return the segment name.
- Returns
The segment name.
-
property
sensor_name
¶ Return the sensor name.
- Returns
The sensor name.
-
property
type
¶ Return the type of this TBRN.
- Returns
The type of this TBRN.
-
class
tensorbay.utility.tbrn.
TBRNType
(value)[source]¶ Bases:
enum.Enum
TBRNType defines the type of a TBRN.
It has 7 types: 1. TBRNType.DATASET:
"tb:VOC2012" which means the dataset "VOC2012".
TBRNType.SEGMENT:
"tb:VOC2010:train" which means the "train" segment of dataset "VOC2012".
TBRNType.FRAME:
"tb:KITTI:test:10" which means the 10th frame of the "test" segment in dataset "KITTI".
TBRNType.SEGMENT_SENSOR:
"tb:KITTI:test::lidar" which means the sensor "lidar" of the "test" segment in dataset "KITTI".
TBRNType.FRAME_SENSOR:
"tb:KITTI:test:10:lidar" which means the sensor "lidar" which belongs to the 10th frame of the "test" segment in dataset "KITTI". 6. `TBRNType.NORMAL_FILE`:: "tb:VOC2012:train://2012_004330.jpg" which means the file "2012_004330.jpg" of the "train" segment in normal dataset "VOC2012". 7. `TBRNType.FUSION_FILE`:: "tb:KITTI:test:10:lidar://000024.bin" which means the file "000024.bin" in fusion dataset "KITTI", its segment, frame index and sensor is "test", 10 and "lidar".
tensorbay.utility.type¶
TypeEnum, TypeMixin, TypeRegister and SubcatalogTypeRegister.
TypeEnum
is a superclass for enumeration classes that need to create a mapping with class.
TypeMixin
is a superclass for the class which needs to link with TypeEnum
.
TypeRegister
is a decorator, which is used for registering
TypeMixin
to TypeEnum
.
SubcatalogTypeRegister
is a decorator, which is used for registering
TypeMixin
to TypeEnum
.
-
class
tensorbay.utility.type.
SubcatalogTypeRegister
(enum: tensorbay.utility.type.TypeEnum)[source]¶ Bases:
object
SubcatalogTypeRegister is a decorator, which is used for registering TypeMixin to TypeEnum.
-
class
tensorbay.utility.type.
TypeEnum
(value)[source]¶ Bases:
enum.Enum
TypeEnum is a superclass for enumeration classes that need to create a mapping with class.
The ‘type’ property is used for getting the corresponding class of the enumeration.
-
property
type
¶ Get the corresponding class.
- Returns
The corresponding class.
-
property
-
class
tensorbay.utility.type.
TypeMixin
(*args, **kwds)[source]¶ Bases:
Generic
[tensorbay.utility.type._T
]TypeMixin is a superclass for the class which needs to link with TypeEnum.
It provides the class variable ‘TYPE’ to access the corresponding TypeEnum.
-
property
enum
¶ Get the corresponding TypeEnum.
- Returns
The corresponding TypeEnum.
-
property
-
class
tensorbay.utility.type.
TypeRegister
(enum: tensorbay.utility.type.TypeEnum)[source]¶ Bases:
object
TypeRegister is a decorator, which is used for registering TypeMixin to TypeEnum.
tensorbay.utility.user¶
UserSequence, UserMutableSequence, UserMapping and UserMutableMapping.
UserSequence
is a user-defined wrapper around sequence objects.
UserMutableSequence
is a user-defined wrapper around mutable sequence objects.
UserMapping
is a user-defined wrapper around mapping objects.
UserMutableMapping
is a user-defined wrapper around mutable mapping objects.
-
class
tensorbay.utility.user.
UserMapping
(*args, **kwds)[source]¶ Bases:
Mapping
[tensorbay.utility.user._K
,tensorbay.utility.user._V
],tensorbay.utility.repr.ReprMixin
UserMapping is a user-defined wrapper around mapping objects.
-
get
(key: _K) → Optional[_V][source]¶ -
get
(key: _K, default: Union[_V, _T] = None) → Union[_V, _T] Return the value for the key if it is in the dict, else default.
- Parameters
key – The key for dict, which can be any immutable type.
default – The value to be returned if key is not in the dict.
- Returns
The value for the key if it is in the dict, else default.
-
-
class
tensorbay.utility.user.
UserMutableMapping
(*args, **kwds)[source]¶ Bases:
tensorbay.utility.user.UserMapping
[tensorbay.utility.user._K
,tensorbay.utility.user._V
],MutableMapping
[tensorbay.utility.user._K
,tensorbay.utility.user._V
]UserMutableMapping is a user-defined wrapper around mutable mapping objects.
-
pop
(key: _K) → _V[source]¶ -
pop
(key: _K, default: Union[_V, _T] = <object object>) → Union[_V, _T] Remove specified item and return the corresponding value.
- Parameters
key – The key for dict, which can be any immutable type.
default – The value to be returned if the key is not in the dict and it is given.
- Returns
Value to be removed from the mutable mapping object.
-
popitem
() → Tuple[_K, _V][source]¶ Remove and return a (key, value) pair as a tuple.
Pairs are returned in LIFO (last-in, first-out) order.
- Returns
A (key, value) pair as a tuple.
-
setdefault
(key: _K, default: Optional[_V] = None) → _V[source]¶ Set the value of the item with the specified key.
If the key is in the dict, return the corresponding value. If not, insert the key with a value of default and return default.
- Parameters
key – The key for dict, which can be any immutable type.
default – The value to be set if the key is not in the dict.
- Returns
The value for key if it is in the dict, else default.
-
update
(__m: Mapping[_K, _V], **kwargs: _V) → None[source]¶ -
update
(__m: Iterable[Tuple[_K, _V]], **kwargs: _V) → None -
update
(**kwargs: _V) → None Update the dict.
- Parameters
__m – A dict object, a generator object yielding a (key, value) pair or other object which has a .keys() method.
**kwargs – The value to be added to the mutable mapping.
-
-
class
tensorbay.utility.user.
UserMutableSequence
(*args, **kwds)[source]¶ Bases:
MutableSequence
[tensorbay.utility.user._T
],tensorbay.utility.repr.ReprMixin
UserMutableSequence is a user-defined wrapper around mutable sequence objects.
-
append
(value: _T) → None[source]¶ Append object to the end of the mutable sequence.
- Parameters
value – Element to be appended to the mutable sequence.
-
extend
(values: Iterable[_T]) → None[source]¶ Extend mutable sequence by appending elements from the iterable.
- Parameters
values – Elements to be Extended into the mutable sequence.
-
insert
(index: int, value: _T) → None[source]¶ Insert object before index.
- Parameters
index – Position of the mutable sequence.
value – Element to be inserted into the mutable sequence.
-
pop
(index: int = - 1) → _T[source]¶ Return the item at index (default last) and remove it from the mutable sequence.
- Parameters
index – Position of the mutable sequence.
- Returns
Element to be removed from the mutable sequence.
-
-
class
tensorbay.utility.user.
UserSequence
(*args, **kwds)[source]¶ Bases:
Sequence
[tensorbay.utility.user._T
],tensorbay.utility.repr.ReprMixin
UserSequence is a user-defined wrapper around sequence objects.